• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comportements et rôles des métaux lourds au cours de la pyro-gazéification de la biomasse : études expérimentales et thermodynamiques / Behaviors and roles of heavy metals during thermochemical conversion of biomass : experimental and thermodynamic studies

Said, Marwa 14 December 2016 (has links)
Malgré sa disponibilité, la biomasse de troisième génération est peu utilisée pour la production d’énergie en raison notamment de sa forte contamination en métaux lourds. Afin d’améliorer la compréhension du comportement et de l’éventuel rôle catalytique ou inhibiteur de ces métaux au cours de la pyro-gazéification, et optimiser ainsi la valorisation énergétique de la biomasse contaminée, une approche intégrée expérimentale et thermodynamique a été utilisée. Pour mener à bien ces travaux, une méthode d’insertion dans le bois du métal spécifiquement étudié pour son rôle catalytique, le nickel, a été développée. Cette méthode permet de maîtriser la composition et l’homogénéité des échantillons étudiés, sans altérer la structure du bois. Les essais de pyro-gazéification de bois brut et contaminés dans un réacteur à lit fixe, montrent que, même à faibles teneurs en nickel (entre 0,016 et 0,086 mol/ kg de bois), celui-ci a une activité catalytique importante. Les analyses des phases gaz et solides confirment que l’augmentation de la teneur en Ni dans le bois favorise les réactions de pyro-gazéification qui ont ainsi lieu à des températures plus basses (d’environ 100 °C). En parallèle, une étude thermodynamique a été réalisée afin de conforter les résultats expérimentaux et d’aider à mieux comprendre le comportement des métaux lourds présents dans le bois. Les calculs thermodynamiques, basés sur la minimisation de l’enthalpie libre de Gibbs d’un système constitué de 28 éléments (C, H, O, N et 24 éléments mineurs ou traces), fournissent la spéciation et la répartition dans les différentes phases (gaz, liquides et cendres) des métaux lourds, dont le Ni. Ces calculs, et des analyses spécifiques, ont notamment permis de déterminer la spéciation chimique et physique du nickel au cours de la pyro-gazéification et fournir ainsi une base théorique à son activité catalytique en fonction de la température. / Despite its availability, contaminated biomass is not widely used for energy production due to its high contamination with heavy metals. Understanding the role and behavior of those heavy metals in the pyro-gasification process is a major scientific challenge for optimizing the thermochemical valorization of contaminated biomass. For this purpose, experimental and thermodynamic approaches were used. To carry out this work, a methodology for inserting the studied metal (nickel) in the wood matrix was developed without modifying its structure and controlling the composition and homogeneity of the studied samples. The pyro-gasification tests in a fixed bed reactor have shown that nickel has a catalytic performance even at low concentrations (between 0.016 and 0.086 mol / kg wood). The analysis of gas and solid products confirmed that the increase of Ni content in the wood generated a decrease in the samples pyro-gasification temperature by 100°C. In parallel, a thermodynamic study was conducted to confirm the experimental results and improve the understanding of heavy metals behaviors during pyro-gasification reactions. Thermodynamic calculations based on the Gibbs free energy minimization of a system consisting of 28 elements provide speciation and distribution in the different phases of heavy metals, including Ni. These calculations and specific analyses have made it possible to determine the chemical and physical speciation of nickel during pyro-gasification and thus provide a theoretical basis for its catalytic activity as a function of temperature.
2

MSWs gasification with emphasis on energy, environment and life cycle assessment / Etude de la gazéification d'ordures ménagères avec un intérêt particulier pour les bilans énergétiques, environnementaux couplés à l'analyse de cycle de vie

Dong, Jun 29 November 2016 (has links)
Récemment, la pyro-gazéification de déchets ménagers solides (DMS) a suscité une plus grande attention, en raison de ses bénéfices potentiels en matière d’émissions polluantes et d’efficacité énergique. Afin de développer un système de traitement de ces déchets, durable et intégré, ce manuscrit s’intéresse plus spécifiquement au développement de la technique de pyro-gazéification des DMS, à la fois sur l’aspect technologique (expérimentations) et sur son évaluation globale (modélisation). Pour cette étude, quatre composants principaux représentatifs des DMS (déchet alimentaire, papier, bois et plastique) ont été pyro-gazéifiés dans un lit fluidisé sous atmosphère N2, CO2 ou vapeur d’eau. Les expériences ont été menées avec les composés seuls ou en mélanges afin de comprendre les interactions mises en jeu et leurs impacts sur la qualité du syngas produit. La présence de plastique améliore significativement la quantité et la qualité du syngas (concentration de H2). La qualité du syngas est améliorée plus particulièrement en présence de vapeur d’eau, ou, dans une moindre mesure, en présence de CO2. Les résultats obtenus ont été ensuite intégrés dans un modèle prédictif de pyro-gazéification basé sur un réseau de neurones artificiels (ANN). Ce modèle prédictif s’avère efficace pour prédire les performances de pyro-gazéification des DMS, quelle que soit leur composition (provenance géographique). Pour améliorer la qualité du syngas et abaisser la température du traitement, la gazéification catalytique in-situ, en présence de CaO, a été menée. L’impact du débit de vapeur d’eau, du ratio massique d’oxyde de calcium, ainsi que de la température de réaction a été étudié en regard de la production (quantité et pourcentage molaire dans le gaz) d’hydrogène. La présence de CaO a permis d’abaisser de 100 oC la température de gazéification, à qualité de syngas équivalente. Pour envisager une application industrielle, l’activité du catalyseur a aussi été évaluée du point de vue de sa désactivation et régénération. Ainsi, les températures de carbonatation et de calcination de 650 oC et 800 oC permettent de prévenir la désactivation du catalyseur, tandis que l’hydratation sous vapeur d’eau permet la régénération. Ensuite, une étude a été dédiée à l’évaluation et à l’optimisation de la technologie de pyro-gazéification par la méthode d’analyse de cycle de vie (ACV). Le système de gazéification permet d’améliorer les indicateurs de performances environnementales comparativement à l’incinération conventionnelle. De plus, des systèmes combinant à la fois la transformation des déchets en vecteur énergétique et la mise en œuvre de ce vecteur ont été modélisés. La pyro-gazéification combinée à une turbine à gaz permettrait de maximiser l’efficacité énergétique et de diminuer l’impact environnemental du traitement. Ainsi, les résultats permettent d’optimiser les voies actuelles de valorisation énergétique, et de d’optimiser les techniques de pyro-gazéification. / Due to the potential benefits in achieving lower environmental emissions and higher energy efficiency, municipal solid waste (MSW) pyro-gasification has gained increasing attentions in the last years. To develop such an integrated and sustainable MSW treatment system, this dissertation mainly focuses on developing MSW pyro-gasification technique, including both experimental-based technological investigation and assessment modeling. Four of the most typical MSW components (wood, paper, food waste and plastic) are pyro-gasified in a fluidized bed reactor under N2, steam or CO2 atmosphere. Single-component and multi-components mixture have been investigated to characterize interactions regarding the high-quality syngas production. The presence of plastic in MSW positively impacts the volume of gas produced as well as its H2 content. Steam clearly increased the syngas quality rather than the CO2 atmosphere. The data acquired have been further applied to establish an artificial neural network (ANN)-based pyro-gasification prediction model. Although MSW composition varies significantly due to geographic differences, the model is robust enough to predict MSW pyro-gasification performance with different waste sources. To further enhance syngas properties and reduce gasification temperature as optimization of pyro-gasification process, MSW steam catalytic gasification is studied using calcium oxide (CaO) as an in-situ catalyst. The influence of CaO addition, steam flowrate and reaction temperature on H2-rich gas production is also investigated. The catalytic gasification using CaO allows a decrease of more than 100 oC in the reaction operating temperature in order to reach the same syngas properties, as compared with non-catalyst high-temperature gasification. Besides, the catalyst activity (de-activation and re-generation mechanisms) is also evaluated in order to facilitate an industrial application. 650 oC and 800 oC are proven to be the most suitable temperature for carbonation and calcination respectively, while steam hydration is shown to be an effective CaO re-generation method. Afterwards, a systematic and comprehensive life cycle assessment (LCA) study is conducted. Environmental benefits have been achieved by MSW gasification compared with conventional incineration technology. Besides, pyrolysis and gasification processes coupled with various energy utilization cycles are also modeled, with a gasification-gas turbine cycle system exhibits the highest energy conversion efficiency and lowest environmental burden. The results are applied to optimize the current waste-to-energy route, and to develop better pyro-gasification techniques.
3

Chlorinated contaminants mitigation during pyro-gasification of wastes using CaO reactant : experimental and life cycle assessment / Abattement des contaminants chlorés lors de la pyro-gazéification de déchets en utilisant un réactif à base de CaO : étude expérimentale et analyse du cycle de vie

Tang, Yuanjun 27 November 2018 (has links)
Le traitement thermique des déchets municipaux suscite de plus en plus l’attention du fait des gains énergétiques et environnementaux associés. Cependant, du fait de la présence de composés chlorés (sels, plastiques) de l’acide chlorhydrique (HCl) est généralement produit lors de ce traitement et provoque des désagréments tels que la corrosion, la formation de contaminants organiques toxiques, une acidification, etc. De ce fait, le but du présent travail de thèse vise à étudier le rôle d’un réactif à base de CaO (oxyde de calcium) pour l’abattement in-situ des émissions de HCl issues du traitement thermique des déchets. Dans ce travail, l’absorption/réaction du gaz HCl par le lit catalytique de CaO a été étudiée expérimentalement et théoriquement. Tout d’abord, il a été montré que le lit de CaO conduit à un abattement significatif du HCl généré, formant une couche de CaCl2 en surface des particules de CaO. Cependant, la température opératoire est un facteur important du procédé, la capacité d’absorption de HCl diminuant de 778,9 à 173,9 mg/g-CaO en augmentant la température de 550 à 850°C. L’analyse cinétique de la réaction, en confrontant les données expérimentales à différents modèles de réaction de surface sur une particule, montre que la diffusion du gaz HCl au travers de la couche de CaCl2 (produit de la réaction de surface) est d’abord limitée par la réaction à l’interface puis par la diffusion de HCl dans cette couche poreuse en croissance. Pour simuler la génération de HCl in-situ par une source organique, la pyro-gazéification du PVC a été effectuée en présence ou en absence de CaO. Une modélisation des différentes étapes de la décomposition du PVC en présence de CaO a montré que l’énergie d’activation apparente de la réaction de déchlorination était légèrement augmentée (de 136,5 à152,6 kJ/mol) tandis que l’énergie apparente globale de la pyro-gazéification du PVC est diminuée de 197,3 à 148,9 kJ/mol en utilisant CaO. La génération in-situ de HCl a aussi été réalisée en utilisant un mélange modèle de déchets municipaux, contenant du chlore organique et inorganique. L’abattement en HCl a été évalué, et la nature chimique des goudrons a été analysée. En présence de CaO, la part de composés organiques oxygénés est réduite, améliorant ainsi la qualité des goudrons en vue d’un raffinage en bio-huile. Une approche par analyse de cycle de vie a aussi été réalisée pour la pyro-gazéification et l’incinération des déchets municipaux. La modélisation a été réalisée en envisageant 3 scénarios de déchlorination : (1) gazéification avec fusion des cendres puis une étape de traitement du chlore ex-situ à basse température, (2) gazéification suivie d’une étape d’épuration du chlore ex-situ à haute température, (3) gazéification couplée à une déchlorination in-situ en présence du réactif CaO. Ce dernier scénario hypothétique offre les meilleures performances environnementales (par exemple: acidification, réchauffement, émissions polluantes toxiques….) mais reste un modèle théorique et simplifié. / Thermal treatment of municipal solid waste (MSW) attracts increasing attention due to the associated environmental and energy benefits. However, due to the chlorinated components of the MSW (salts, plastics) hydrogen chloride (HCl) is usually generated and may cause corrosion, toxic organic contaminants formation, acidification, etc. The present study focuses on the reactivity of a calcium oxide (CaO) reactant for in-situ mitigation of released HCl from thermal treatment of MSW. In this work, sorption of HCl gas in CaO reactive bed has been experimentally and theoretically studied. First, it is shown that the use of CaO is effective to remove released HCl gas, by forming a CaCl2 layer at the surface of CaO particles. However, temperature of the reactor is a key process parameter, since the removal capacity of HCl decreases significantly from 778.9 to 173.9 mg/g-CaO with the increase of temperature from 550°C to 850°C. A kinetics analysis has been developed by comparing experimental data with models describing the reaction at the particle surface. It has been concluded that the sorption of HCl at the CaO particle surface is firstly limited by the heterogeneous gas-solid reaction, followed by the HCl diffusion through this porous growing layer. To simulate the in-situ generation of HCl from organic source, pyro-gasification of PVC has been performed with or without CaO addition. The experimental data have been then used for the modeling of the different PVC decomposition steps. Although the average apparent activation energy of pseudo dehydrochlorination reaction is increased from 136.5 kJ/mol to 152.6 kJ/mol with the addition of CaO, the apparent activation energy of the overall PVC decomposition has been decreased from 197.3 to 148.9 kJ/mol by using CaO reactant. In-situ generation of HCl from organic and inorganic sources has also been conducted using simulated MSW. HCl mitigation has been evaluated together with the chemical speciation of the produced tars. Using CaO, the amount of oxygenated organic compounds has been reduced, improving the quality of the tars for a further bio-oil upgrading. To complete the aforementioned works, life cycle assessment (LCA) of three typical pyro-gasification and incineration processes is conducted to compare their overall environmental sustainability. Moreover, pyro-gasification-based WtE systems with different dehydrochlorination strategies are further modeled: 1) conventional gasification system; 2) novel gasification coupled with ex-situ high temperature dehydrochlorination system; and 3) hypothetical gasification coupled with in-situ dehydrochlorination system. The obtained results could be applied to optimize the current waste pyro-gasification systems, with special focus on developing strategies for in-situ dehydrochlorination purpose.

Page generated in 0.0692 seconds