Spelling suggestions: "subject:"pyrolysolja"" "subject:"pyrolysoljan""
1 |
Produktion av Pyrolysolja från kvistrejekt / Production of bio-oil from knot residueWennebro, Jonas January 2012 (has links)
Fast pyrolysis is a method for converting biomass into three energy rich products: char, gas and bio-oil, where the latter is most interesting. Pyrolysis is an endothermic process where biomass is heated in an anaerobic environment and, with the right operating conditions, up to 80 %wt bio-oil can be extracted. Key parameters for fast pyrolysis are: stable reactor temperature (~500°C), short residue time for gas in the reactor (<2 s) and a very high heating rate for the biomass. Today there are several different process solutions for fast pyrolysis, where fluidized beds and rotating cones are most developed. Bio-oil has compared to fossil oil: lower heating value, low pH and also polymerizes with time. Because of this upgrading is desirable for increasing competitiveness. Several large projects for producing of bio-oil are at the moment developed around the world. Though often is subsidy money involved in these projects. Domsjö Fabriker AB in Örnsköldsvik, who is converting softwood into special cellulose, bio-ethanol and lignin, are interested in pyrolysis technology. They are using the unique sulphide process; and during the pulping of the biomass a residue in form of knots are extracted from the process. This waste product is of little value and the company is interested in investigating the possibility to produces bio-oil from these knots. The knots have several characteristics that differ from normal biomass, such as high amount of ash and extractives. High ash content leads to secondary reactions in the reactor, which leads to lower yields of bio-oil. Because of this the knots are not an optimum raw material for fast pyrolysis. At the same time high amount of extractives in the biomass might result in a to two phase liquid product. To ensure how well the knots will behave during pyrolysis testing is needed. The relatively low reject flow (18 tons/day) will, in relative terms, lead to high investment costs and a larger facility (120+ tons/day) is preferred in order to keep production costs low. Considering this, plus an uncertainty regarding the knots as a raw material for pyrolysis, bio-oil as a fuel and fast pyrolysis competitiveness, a recommendation for investing in a pyrolysis plant at Domsjö will not be recommended without first experimentally examining this untested biomass in combination with fast pyrolysis technology.
|
2 |
Pyrolysintegration i kraftvärmeverk : Utnyttjande av kondenseringsvärme för fjärrkyleproduktion / Pyrolysis Integration in a Combined Heat and Power Plant : Utilizing Condensation Heat for Production of District CoolingKarlsson, Victor January 2014 (has links)
Strävan att nå ett hållbart samhälle har varit en av de viktigaste aspekterna under 2000-talet. Det stora problemet är hur målet skall nås. Användningen av fossila bränslen måste minskas, men vilken energikälla skall ersätta dem? Biomassa har haft en viktig roll i minskningen av fossila bränslen som använts i uppvärmningssyfte. Teknikutveckling har medfört att dess betydelse kan bli än viktigare. Snabb pyrolys är en process där en bioolja, kallad pyrolysolja, produceras genom nedbrytning av biomassa. Denna process kräver extern värmetillförsel, vilket gör den lämplig att integrera i ett kraftvärmeverk. Problemet med kraftvärmeverk är dess minimala drift under sommarhalvåret. En pyrolysintegration skulle öka användandet av anläggningen. Pyrolysoljan som utvinns kan ersätta fossila bränslen som används i pannor och turbiner. Den kan även uppgraderas till bio-diesel men det är i dagsläget inte lönsamt. Pyrolysintegration skulle få maximal produktion under sommarhalvåret. Under denna period ökar också behovet av kyla. Under sommaren täcks en del av kylbehovet av kylkompressorer som drivs på elektricitet. Ett hållbart samhälle innebär att rätt form av energi utnyttjas. Att använda den högvärdiga energiformen elektricitet till komfort är inte hållbart. Absorptionskylcykeln är en kylmaskin som är snarlik en kylkompressor, med den stora skillnaden att den drivs på lågtempererad värme. För att utvinna pyrolysoljan från pyrolysprocessen krävs det en eller flera kondensorer. Kondenseringsvärmen kan användas för att driva en absorptionskylmaskin. Förenklat omvandlar den värme till kyla med minimalt behov av elektricitet. Pyrolysintegreringen med fjärrkyleproduktion skulle producera värme, elektricitet, pyrolysolja och fjärrkyla, allt med ursprung från biomassa. Potentialen i denna anläggning är stor, vilket resultatet av denna undersökning visar. Ett kraftvärmeverk med en förbränningspanna på 80 MW ångeffekt har studerats och tre olika fall undersöktes. Det första fallet maximerar pyrolysoljeproduktionen och producerar 78 000 ton pyrolysolja/år och fjärrkyla motsvarande 11 GWh. Det andra fallet maximerar fjärrkyleproduktionen och producerar 37 GWh fjärrkyla och pyrolysolja motsvarande 68 000 ton/år. Det sista fallet ger en mer balanserad produktion på 74 000 ton pyrolysolja/år och 22 GWh fjärrkyla. Framtida forskning bör undersöka hur kyleffekten varierar under dygnet i ett försök att ytterligare effektivisera anläggningen. Kondenseringsbeteendet hos pyrolysolja utvunnen från biomassa med ursprung från Skandinavien bör också undersökas vidare. / The pursuit of a sustainable society has been one of the most important aspects in the 21st century. The big problem is how to achieve this goal. The use of fossil fuels must be reduced, but which energy source should be used to replace it? Biomass has played a significant role in the reduction of fossil fuels used for heating purposes. With new technology its importance may be even greater. Fast pyrolysis is a process where a bio oil, called pyrolysis oil, is produced by the degradation of biomass. This process requires external heat, which makes it suitable to integrate with a combined heat and power plant. The problem of combined heat and power plants are its minimal operational during the summer. A pyrolysis integration would increase the use of the facility. The pyrolysis oil that is extracted can replace fossil fuels used in boilers and turbines. It can also be upgraded to bio-diesel, but currently that process is too costly. The pyrolysis integration would get maximum production during the summer months. During the same period the cooling demand is increased. During the summer cooling load is covered largely of refrigerating compressors run on electricity. A sustainable society means that the right kind of energy is utilized. Using the high-quality form of energy electricity for comfort is not sustainable. The absorption refrigeration cycle is a chiller similar to a refrigeration compressor, with the major difference that it runs on low-temperature water. The pyrolysis process requires one or more condensers in order to extract pyrolysis oil. When the pyrolysis oil condenses low temperature heat is produced. This condensation heat can be used to drive an absorption chiller, which simplified converts heat to cold, with minimal need for electricity. The pyrolysis integration with district cooling production would produce heat, electricity, pyrolysis oil and cooling, all originating from biomass. The result from the study shows potential. A cogeneration plant with a combustion boiler steam output of 80 MW has been studied and three different cases were investigated. The first case maximizes the production of pyrolysis oil and produces 78 000 tonnes of pyrolysis oil / year and district cooling equivalent to 11 GWh. The second case maximizes the district cooling production and produces 37 GWh of district cooling and pyrolysis oil equivalent to 68 000 tonnes / year. The last study provides a more balanced production of 74 000 tons of pyrolysis oil / year and 22 GWh of district cooling. Future studies should investigate how the cooling effect varies during the day in an attempt to further improve the efficiency of the plant. The liquefaction behavior of pyrolysis oil derived from biomass originating from Scandinavia should also be investigated further.
|
3 |
Granskning av avancerade pyrolysprocesser med lignocellulosa som råvara – tekniska lösningar och marknadsförutsättningar / Review of advanced pyrolysis processes with lignocellulosic feedstock - technical solutions and market conditionsSundberg, Elisabet January 2017 (has links)
När befolkningsmängden ökar och teknisk och ekonomisk utveckling sker så påverkas även energianvändningen. Detta ställer krav på att energitillförseln är säker, stabil och hållbar. I dag är det fossila bränslen som dominerar globalt sett vilket får konsekvenser för den miljö vi lever i, och dessutom är det en ändlig, ohållbar resurs. Därför behöver dessa ersättas av hållbara alternativa energikällor, vilket också är centralt för miljömål i både Sverige och i den Europeiska Unionen. Förhoppningar finns om att processer som omvandlar lignocellulosa till fasta, flytande och gasformiga drivmedel och bränslen kan bidra till omställningen från fossilt till förnybart. I detta examensarbete som utförts i samarbete med KTH och IVL Svenska Miljöinstitutet har främst en av dessa omvandlingsprocesser undersökts närmare – pyrolys. Pyrolys är en termisk process som omvandlar lignocellulosa under temperaturer mellan cirka 300-650 °C under syrefria förhållanden. Tre faser kan erhållas. En gasfas som kan kondenseras till pyrolysolja, en fast fas som benämns biokol eller kol (beroende på slutanvändning) och en okondenserbar gasfas. Utbytet av produkter och kvalitet på dessa styrs främst av: typ av råvara, typ av reaktor och av vilka processförhållanden som råder. En undersökning av olika pyrolysprocessers status på marknaden har gjorts. Graden av kommersialisering och status i nuläget och hur framtiden kan se ut för både tekniken och produkterna har uppskattats genom litteraturstudier, internetsökningar och intervjuer med utvalda företag och personer med kunskaper inom pyrolys. Rapporten visar att pyrolys inte ännu är en helt kommersiell process, men att den har möjlighet att bli det med rätt förutsättningar. Det är svårt att säga när det sker, då det förutom fortsatt teknisk utveckling, ökad kunskap kring pyrolysprocessen och resultat av demonstrationer beror på olika externa faktorer. Yttre faktorer för kommersialisering av pyrolys i Sverige har identifierats som ökad säkerhet kring politiska styrmedel och beslut kring långsiktiga sådana (osäkerhet och kortsiktiga beslut skrämmer bort investerare), vikten av att etablera en värdekedja för att säkra investeringen, och priser på fossila drivmedel och biomassa som råvara. Processer för produktion av biokol verkar dock ha hunnit längre än de för pyrolysolja och är i ett tidigt stadium av kommersialisering. Den enda tillämpningen som är fullt kommersiell idag är produktion av träkol och för detta tillämpas ofta traditionella satsvisa processer. Många möjliga användningsområden för produkterna finns där de har potential att reducera koldioxidutsläpp och bidra till en mer hållbar framtid. Standardisering och certifiering av produkter är då viktigt, samt demonstration av användning. Stabilisering och vidare förädling av pyrolysoljan är en annan viktig faktor för kommersialisering. Ännu verkar processer för katalytisk uppgradering inte vara tillräckligt tekniskt eller ekonomiskt utvecklade för att ge en konkurrenskraftig produkt, men forskning pågår kring detta. Integrering av processen ser ut att kunna öka energieffektiviteten, samt bidra till minskade produktionskostnader. / The population growth as well as a rapid technical and economic development globally affects the energy consumption. This requires a secure, stable and sustainable supply of energy. Today fossil fuels dominate globally and this results in environmental problems. Fossil fuels are also a finite, unsustainable resource. Thus, there is a need to replace fossil fuels with sustainable alternative sources of energy. This is also central for environmental goals both in Sweden and in the European Union. There are expectations that processes for the conversion of lignocellulosic biomass to solid, liquid and gaseous fuels can contribute to a transition from fossil to renewable fuels. In this thesis, carried out in collaboration between KTH and IVL Swedish Environmental Research Institute, one of the conversion processes is investigated in detail – pyrolysis. Pyrolysis is a thermal process that converts lignocellulose under anaerobic conditions at temperatures between about 300-650°C. Three phases can be obtained as products. A volatile which can be condensed into pyrolysis oil, a solid which may be termed biochar or charcoal depending on the end use, and a gas phase. The yield and the quality of the products is dependent upon the type of raw material, the type of reactor and the process conditions. An examination of the status of different pyrolysis processes on or on the way to the market has been made. The current degree of commercialization and what the future may look like for both the technology and the products have been assessed through literature studies, internet searches, and interviews with selected companies and individuals with expertise in pyrolysis. This report reveals that continuous pyrolysis is not yet a fully commercial process, but that it has the opportunity to reach commercialization during the right conditions. It is difficult to say when it occurs, due to various external factors, continued technical development, increased knowledge of the pyrolysis process and results of the current demonstrations. In this report, several critical factors for the commercialization of pyrolysis in Sweden have been identified, e.g. increased stability for policy instruments and that will limit the risk for investments (uncertainty and short-term decisions frightens investors) and the establishment of a value chain for the products, i.e. a stable market. Prices on fossil fuels and biomass feedstock are also important factors. Processes for the production of biochar is in the early stages of commercialization, and seem to have reached further in their development than processes for pyrolysis oil. The only fully commercial application of pyrolysis today is the production of charcoal that commonly is performed in traditional batch-wise processes. There are many possible uses for the products in which they have the potential to reduce carbon emissions and contribute to a more sustainable future. Standardization and certification of products is important, and demonstration of the use. Stabilization and further upgrading of pyrolysis oil is another important factor for commercialization. It seems like processes for catalytic upgrading are not yet sufficiently technically or financially developed to be able to provide a competitive product. Research and development in this area are ongoing. Integration of the process with incumbent industrial processes seems to be able to offer increased energy efficiency and reduced production costs.
|
Page generated in 0.0318 seconds