• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 13
  • Tagged with
  • 29
  • 15
  • 14
  • 13
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Produktion av Pyrolysolja från kvistrejekt / Production of bio-oil from knot residue

Wennebro, Jonas January 2012 (has links)
Fast pyrolysis is a method for converting biomass into three energy rich products: char, gas and bio-oil, where the latter is most interesting.  Pyrolysis is an endothermic process where biomass is heated in an anaerobic environment and, with the right operating conditions, up to 80 %wt bio-oil can be extracted. Key parameters for fast pyrolysis are: stable reactor temperature (~500°C), short residue time for gas in the reactor (<2 s) and a very high heating rate for the biomass. Today there are several different process solutions for fast pyrolysis, where fluidized beds and rotating cones are most developed. Bio-oil has compared to fossil oil: lower heating value, low pH and also polymerizes with time. Because of this upgrading is desirable for increasing competitiveness. Several large projects for producing of bio-oil are at the moment developed around the world. Though often is subsidy money involved in these projects.  Domsjö Fabriker AB in Örnsköldsvik, who is converting softwood into special cellulose, bio-ethanol and lignin, are interested in pyrolysis technology. They are using the unique sulphide process; and during the pulping of the biomass a residue in form of knots are extracted from the process. This waste product is of little value and the company is interested in investigating the possibility to produces bio-oil from these knots. The knots have several characteristics that differ from normal biomass, such as high amount of ash and extractives. High ash content leads to secondary reactions in the reactor, which leads to lower yields of bio-oil. Because of this the knots are not an optimum raw material for fast pyrolysis. At the same time high amount of extractives in the biomass might result in a to two phase liquid product. To ensure how well the knots will behave during pyrolysis testing is needed. The relatively low reject flow (18 tons/day) will, in relative terms, lead to high investment costs and a larger facility (120+ tons/day) is preferred in order to keep production costs low. Considering this, plus an uncertainty regarding the knots as a raw material for pyrolysis, bio-oil as a fuel and fast pyrolysis competitiveness, a recommendation for investing in a pyrolysis plant at Domsjö will not be recommended without first experimentally examining this untested biomass in combination with fast pyrolysis technology.
2

Numerical Energy Modeling to Increase Fuel Efficiency of An Activated Carbon Production / Numerisk Energimodellering för Förbättring av Bränsleeffektivitet vid en Produktion av Aktivt Kol

Thyberg, Viktor January 2014 (has links)
No description available.
3

Förbränning av termokemiskt behandlade biobränslen : en studie av biomassa som genomgått en pyrolys-, torrefierings- eller steam explosionprocess

Lindberg, Karl January 2014 (has links)
EU har som mål att år 2020 ha minskat utsläppen av växthusgaser med 20 % och ökat andelen förnyelsebar energi till 20 %. I Sverige är andelen fossilt bränsle som förbränns ca 30 %. Denna studie syftar till att utreda om termokemiskt behandlade biobränslen kan ersätta de kommersiella fossila bränslena. Resultatet har nåtts med simulering i programvaran Fuelsim och insamling av experimentella data.  En simulering ska påvisa om syreberikning gynnar bränslena och experimentella data används för att se vilka problem som finns för respektive bränsle. Den biomassa som analyserats kommer från ett vedslag liknande gran eller tall som har genomgått processen mellansnabb pyrolys, torrefiering eller steam explosion. Ingen ekonomisk aspekt har tagits i beaktande vid utvärderandet av bränslena. Pyrolysprocessens produkt pyrolysvätska har flera utmaningar framför sig innan den kan ersätta befintliga oljor. Den är väldigt korrosiv, har en hög fukthalt och en kort lagringstid på sex månader. Pyrolysvätskan tycks gynnas av en syreberikning på 0,5 till 2 %. Pyrolyskoksen har potentialen att ersätta eller samförbrännas med kol i kolpulvereldadepannor. Pyrolysgasen innehåller en stor mängd CO2 vilket ger den ett lågt energiinnehåll. Både pyrolyskoksen och pyrolysgasen bör i första hand förbrännas i en fluidbäddspanna som är integrerad med pyrolysreaktorn eftersom pannanläggningen behöver värmen. Torrefieringsgasen är en biprodukt från framställningen av torrefierad biomassa. Problem med filtrering och kondensering av gasen medför att den bör sameldas med något annat bränsle för att återföra värmen till reaktorn. När den torrefierade biomassan pelleterats förbränns den lämpligast i storskaliga pannor såsom bubblande fluidbädd(BFB)-, eller cirkulerande fluidbädd(CFB)- eller rostpannor men även mindre pelletspannor är möjligt. Intrimning av bl.a. luftflöden är nödvändig vid samförbränning och även vid konvertering från annat bränsle för att uppnå en erforderlig förbränning. Simuleringsresultaten av steam explosion (SE) pellets visar potential som ersättare till både träpelleten och stenkolet. Baserat på simuleringen förbränns SE pellets lämpligast i CFB-, BFB- eller rostpannor. Ett begränsat utbud av experimentella data medför dock att bränslet inte kan utvärderas fullständigt. Studien visar att det inte är helt problemfritt att konvertera från ett kommersiellt bränsle till ett termokemiskt behandlat bränsle och att fler experimentella data behövs för att utvärdera bränslenas förbränningsegenskaper. / A goal set by The European Union is to reduce the emissions from greenhouse gases by 20 % and increase renewable energy with 20 % until year 2020.  Fossil fuels account for about 30 % of Sweden’s combusted fuel. The purpose of this study is to investigate if thermochemically treated biofuels can replace or be co-fired with commercial fuels. The results are gathered from experimental data and from the simulations made with the software Fuelsim.  A simulation will be made to determine whether oxygen-enrichment favors the fuels and experimental data is used to investigate if any combustion problems exist with these fuels. The biomass that have been analyzed comes mainly from pine wood or spruce wood trees which have been processed through either a fast pyrolysis, torrefaction or a steam explosion reactor. No economic aspect has been taken into account in the evaluation of the fuels. One of the pyrolysis process products is pyrolysis liquid which has several challenges ahead before it can replace existing oils. It is very corrosive, has a high moisture content and the storage time is limited to short period of six months. The pyrolysis liquid seems favored by an oxygen-enrichment of 0,5 to 2 % according to the simulation results. The pyrolysis char has the potential to replace or be co-fired with coal in a pulverized coal burner. Pyrolysis gas contains a large amount of CO2, giving it a low energy content. Both char and gas should primarily be combusted in a fluid bed boiler that is integrated with the pyrolysis reactor as boiler plant requires heat. The torrefaction gas is a by-product from the processing of torrefied biomass. Current problems with filtration and condensation of the gas entails that it should be co-fired with another fuel to return the heat to the torrefaction reactor. When the torrefied biomass has been pelletized it is preferably combusted within a large scale boiler such as bubbling fluid bed- (BFB), circulating fluid bed- (CFB) or grate boilers also smaller pellet boilers is possible. Fine adjustments of airflow etc. are required when co-firing or when converting from another fuel to achieve required combustion of the torrefied pellets. The steam explosion pellet simulation results shows that the potential to replace both wood pellets and coal. Based on the results combustion of steam explosion pellets is preferable in either a CFB-, BFB- or grate boiler. This fuel cannot be fully evaluated because of the limited range of experimental data. This study shows that it is problematic to convert from commercial fuels to a thermochemically treated fuel and more experimental data is needed to evaluate the fuels combustion characteristics.
4

Granskning av snabb pyrolys och hydropy- rolys för produktion av bioolja från trärester : Fyra undersökta tillverkningsmetoder med en teknisk och ekonomisk jämförelse

Astner, Måns January 2018 (has links)
Världens klimat- och miljöproblem är ett av dagens stora utmaningar samtidigt som alla resurser ska räcka till ett drägligt liv för en växande befolkning. För att klara dessa utmaningar bör bland annat världens energisystem övergå till 100% förnybart, vilket innebär att tillförseln av fossil energi måste fasas ut och ersät- tas. Fossila bränslen är en ändlig resurs jämfört med biobränslen som kan agera substitut för att öka energitillförseln och minska miljöpåverkan. Denna rapport bygger på att utvärdera fyra företag som levererar teknik för att omvandla bio- massa till biokol, bioolja samt biogas genom en pyrolysprocess. Utvärderingen skall resultera i ett beslutsunderlag för en uppdragsgivare som vill producera bioolja från restprodukter i ett sågverk där val av leverantör främst ska utgå ifrån hur mycket bioolja som kan produceras samt med så hög kvalitet som möjligt. De fyra företagen som undersöks är Steeper Energy och Licella som levererar hydrpyrolysteknik samt BTG-BTL och Biogreen som levererar teknik för snabb pyrolys. Rapporten innehåller även en ekonomisk jämförelse mellan de två teknikerna snabb pyrolys och hydropyrolys. Undersökningen har visat att hydropyrolys ger den bästa slutprodukten men att snabb pyrolys är den mest ekonomiskt lönsamma. Steeper Energy anses vara den bästa kandidaten för än- damålet när det kommer till kvalité och kvantitet av produkt samt energieffekti- vitet.
5

Adderade råmaterial för produktion av biokol / Feedstocks for Production of Biochar

Qviström, Johan January 2019 (has links)
Denna rapport undersöker ett antal biomassors lämplighet att användas vid tillverkning av biokolgenom långsam pyrolys. Detta har genomförts med hjälp av en litteraturstudie inklusive fallstudierför alla undersökta biomassor och det resulterade i två modeller. En för karaktärisering av biokoletskemiska och fysiska egenskaper vid varierande pyrolystemperatur. Den andra modellen beskriver ivilken utsträckning systemets energibehov är självförsörjande. Detta genom att undersöka reaktornsenergibehov vid olika temperaturer och uppehållstider i förhållandet till den energimängd som finnstillgänglig i pyrolysgasen. De biomassor som i första hand undersökts är fiberslam, ligninpellets,olivavfall, solrosskal och kaffesump. Utöver dessa har även cashewnötsskal, kokosnötskal, risskal ochmandelskal inkluderats för att bedöma deras lämplighet att användas av Stockholm Exergi.Litteraturstudien visade att det finns många parametrar hos både processen och biomassan sompåverkar kvaliteten på biokolet, fördelning av produkter och systemnyttor. Att kvantifiera inverkanav alla parametrar visade sig svårt på grund av brist på data, varför endast effekten avpyrolystemperaturen kunde modelleras. Modell 1 visar att biokol från nötskal generellt sett är avhögre kvalitet än de från till exempel kärnor, olika typer av halm och biomassor med hög fukt ochaskhalt. De flesta nötskal är enligt fallstudierna mer lämpade för processer med fokus på bioolja somhuvudsaklig produkt. Modell 2 visade att mandelskal och olivkärnor bör ge en energimässigtsjälvförsörjande process vid temperaturer över 400 °C. / This report investigates the feasibility of several types of biomass to be used as feedstock forproduction of biochar by slow pyrolysis. A literature review and case studies for all investigatedfeedstocks resulted in two models: one for the characterization of physical and chemical propertiesof biochar at different high treatment temperatures, and the other for determining to what degreethe system will be thermally self-sustaining, if at all. This by determining the energy required by thereactor in comparison to the energy available in the pyrolysis gas. The primary investigatedfeedstocks were: fibre sludge, lignin pellets, olive wastes, sunflower seeds and exhausted coffeeresidue. Additionally, cashew nut shells, coconut shells, rice husks and almond shells were alsoinvestigated to determine their suitability for future use by Stockholm Exergi. The literature reviewshowed that there are various process parameters or parameters within the composition of thefeedstock that effects both the quality of the produced biochar, product distributions, and benefitswithin the system. To quantify the effect of all the parameters proved difficult due to the lack ofdata. However, enough data regarding the effects of the treatment temperature was collected andcould be used for modelling. Model 1 showed that biochar produced from nutshells generallyproduced biochar of higher quality than biochar made from kernels, different types of straw andfeedstocks with high content of water and ash. Most nutshells would, according to the conductedcase study, be more suited for processes where the primary objective is production of bio-oil. Model2 showed that almond shells and olive kernels should generate a thermally self-sustaining process attemperatures above 400 °C.
6

Pyrolys för värmeproduktion : Biokol den primära biprodukten

Gustafsson, Mattias January 2013 (has links)
Pyrolys innebär att exempelvis biobränsle hettas upp i syrefattig miljö för att bilda pyrolysgas och kol. Pyrolysgasen kan brännas för att producera värme med låga utsläpp och kolet har en mängd användningsområden; jordförbättringsmedel, fodertillskott, filtermaterial, kolfastläggning, energibärare, ståltillverkning m.m. Om krav på bränsle och användningsområde för kolet uppfylls kan kolet certifieras som biokol. Syftet med den här rapporten är att utreda om pyrolystekniken är ett hållbart, tekniskt och ekonomiskt alternativ till pellets- och flisförbränning för värmeproduktion. Målet är att förmedla pyrolysens tekniska och ekonomiska förutsättningar, såväl positiva som negativa. Rapporten är baserad på en kombination av litteraturstudier, djupintervjuer, besök vid anläggningar och referensgruppsamtal.   Pyrolys har använts i tusentals år för att producera kol. I Amazonas upptäcktes landområden med en sammalagd yta större än Storbritannien i vilka jorden var kolsvart. Denna svarta jord, terra preta, är berikad med kol och har därmed blivit mycket bördigare än omgivande, ursprunglig jord. I Sverige framställdes kol för att tillgodose metallindustrin med bland annat produktionsmaterial och bränsle. Till skillnad från pellets- och flisförbränning kan pyrolystekniken använda en stor mängd olika bränslen så länge de uppfyller krav på energidensitet och fukthalt. Marknaden för biokol växer i bl.a. Tyskland men är ännu liten i Sverige. De leverantörer av pyrolysanläggningar som besökts i denna rapport, Pyreg och Carbon Terra, gör anläggningar med syfte att producera biokol. Pyreg har utvecklat en process med skruvreaktor och integrerad pyrolysgasbrännare för att t.o.m. kunna använda avloppsslam som bränsle. Carbon Terras process är enkel och robust med fokus att producera mycket kol.   Pyrolysteknikens styrkor är flexibiliteten att välja olika typer av bränslen, låga utsläpp, liten negativ miljöpåverkan och kolets olika användningsområden. Ser man till svagheterna är de marknadsrelaterade; outvecklad svensk marknad och okunskap om kolets användningsområden. Dessutom gör pyrolysanläggningarnas statiska effektuttag att de är mindre flexibla än pellets- och flispannor. I en tid då klimatförändringarna letar akuta lösningar medför kolfastläggning och biokol som jordförbättringsmedel stora möjligheter tillsammans med omvandling av pyrolysgas till fordonsbränsle. Dock är den befintliga pellets- och flisförbränningen väletablerad som uppvärmningsteknik, vilket kan utgöra ett hot mot pyrolysteknikens intåg på marknaden. Avsaknaden av regelverk pga. kompetensbrist kan också försvåra för etablering av pyrolysanläggningar.   Slutsatsen i denna rapport är att pyrolystekniken är ett bra alternativ till konventionell pellets- och flisförbränning om man kan hantera att värmeproduktinen är statisk och att man beaktar kolets värde. Värmeproduktion från pyrolysgas ger lägre utsläpp av bland annat CO, NOx och stoftpartiklar än pellets- och flisförbränning och om kolet används för kolfastläggning är möjligheten till globala klimateffekter betydande. Det som starkast påverkar den ekonomiska kalkylen är kostnaden för bränslet och intäkten på kolet. För att gardera sig mot den outvecklade biokolmarkanden i Sverige har kalkylerna i denna rapport baserats på försäljning av biokol som jordförbättringsmedel, vilket ger låga intäkter jämfört med andra användningsområden. Styrkan i att valet av bränsle är flexibelt gör det möjligt att ha en bränslekostnad på noll om materialet annars ses som avfall. Marknaden för kol i Sverige är outvecklad vilket kräver ett aktivt arbete från de som ger sig in branschen, men om utvecklingen följer den i Tyskland ser de ekonomiska förutsättningarna starka ut. / Pyrolysis is the process where biomass is heated in an environment with low oxygen level forming pyrolysis gas and char. Pyrolysis gas can be combusted to produce heat with low emissions and the char has a multitude of uses: soil improvement, animal feed supplements, filter material, carbon storage, energy source, steel production etc. If certain requirements for the fuel and how the char is used the char certified as biochar. The purpose of this report is to determine if the pyrolysis technology is a sustainable, technical and economical alternative to pellet and wood chip combustion for heat production. The goal is to convey pyrolysis technical and economic conditions, both positive and negative. The report is based on a combination of literature reviews, interviews, plant visits and reference group discussions.   Pyrolysis has been used for thousands of years to produce char. Areas, of a total area larger than the Great Britain, with pitch black soils were discovered in the Amazon. This black soil, terra preta, is enriched with carbon, and has thus become much more fertile than the surrounding native soil. In Sweden char was produced to meet the metal industries’ demand for char as material and fuel. Unlike pellet and wood chip combustion, pyrolysis can use a variety of fuels, as long as they meet the requirements of calorific value and moisture content. The market for biochar is growing particularly in Germany but is still small in Sweden. The suppliers of pyrolysis plants visited in this report, Pyreg and Carbon Terra, develop their plants in order to produce biochar. Pyreg has developed a process with a screw reactor and an integrated pyrolysis gas combustor to be able to use sewage sludge as fuel. Carbon Terra’s process is simple and robust, with a focus to produce large quantities of carbon.   The strengths of the pyrolysis technique are the flexibility to use different types of fuels, low emission, low environmental impact and the different uses of the char. Looking at weaknesses, they are market-related; undeveloped Swedish market and lack of knowledge of how to use biochar. In addition, the pyrolysis facilities have static power output that they are less flexible than pellets and wood chip combustors. At a time when finding solutions on climate change are urgent, carbon storage, using biochar as a soil improver and conversion of pyrolysis gas as a vehicle fuel are great opportunities. However, the existing pellet and wood chip combustion is well established as a heating technology, which could pose a threat to the pyrolysis technology entering the market. The lack of regulation due to shortages of knowledge of pyrolysis may also prevent the establishment of pyrolysis plants. The conclusion of this report is that pyrolysis is a good alternative to conventional pellet and wood chip combustion if you can manage the static power output and that you realize the value of the char. Heat production from pyrolysis produce lower emissions including CO, NOx and smog particles than pellets and wood chip combustion and biochar used for carbon storage has the possibility of significant global climate impact. The strongest influences on the economic calculation are the cost of fuel and the revenue of the char. The strength of being able to choose different types of fuel makes it possible to have a fuel at zero cost if the material is otherwise regarded as waste. The market for biochar in Sweden is undeveloped which increases the uncertainty of the calculations, but if the trend follows that of Germany, the economic prospects are strong.
7

Utvärdering av potential hos organiska restmaterial för avsättning i form av biokol / Evaluating the potential of organic residues for circulation in the form of biochar

Karlsson, Charlotte January 2019 (has links)
Runtom på den svenska marknaden finns olika strömmar av restmaterial som idag ofta uppfattas som avfall. För att uppnå ett mer cirkulärt samhälle finns förhoppningen om att dessa restmaterial skulle kunna nyttjas i en ny applikation och anses som en resurs istället för ett avfall. Biokol, ett kolrikt material skapat genom pyrolys av biomassa, har potential att innebära en högvärdig avsättning för vissa av dessa restmaterial. För att kunna säkerställa kvaliteten på det producerade biokolet för avsedd användning, har en metod nyttjats som kopplar samman materialets egenskaper, biokolets egenskaper och funktioner och lämpliga applikationer. Utvecklingen av en sådan metod kan innebära ett sätt för potentiella tillverkare av biokol att hitta en ny avsättning för sitt restmaterial och säkra att kunderna får rätt produkt för avsedd applikation. En utvärdering av de potentiella ekonomiska och miljömässiga fördelar som en produkt i form av biokol kan bidra med har även genomförts. Efter en genomförd intervjustudie valdes ett restmaterial ut för fördjupad analys; finfraktionen från utsiktat flis av returträ. Idag hanteras flis av returträ huvudsakligen genom förbränning, men potentiella förändringar i hanteringen av detta material kan uppstå inom en snar framtid. Finfraktionen i materialet medför problem under förbränning både genom slitage och korrosion på utrustning och genom brandrisker vid lagring. På grund av denna problematik förutspås att en utsiktning av denna finfraktion, som kan utgöra upp emot 20% av materialet, kan bli aktuellt. En förändring av kraven från mottagande förbränningsanläggningar kan medföra att ett restmaterial snabbt uppkommer i stora volymer, ett restmaterial som saknar avsättning. Genom att undersöka egenskaperna hos denna returträ-finfraktion kunde uppskattningar göras gällande de egenskaper som det tillverkade biokolet skulle komma att få, vilka funktioner kolet kan fylla och vilka applikationer som skulle kunna vara passande. En koppling kunde därmed göras mellan restmaterialets inneboende egenskaper och de kvalitetskrav som ställs på olika användningsområden. Den egenskap hos materialet som medförde störst problematik var innehållet av tungmetaller, med ursprung ifrån tryckimpregnerat returträ eller de färger som använts vid behandling av materialet. För att kringgå problematiken kopplat till innehåll av metaller föreslogs en tillverkning genom flash-pyrolys där en stor del av ingående restmaterial omvandlas till pyrolysolja. Studier har visat att genom denna tillverkning kan en olja med lågt innehåll av metaller produceras genom att metallerna istället koncentreras i kolet. Detta innebär dock att kolet inte uppfyller de krav som ställs för att kallas biokol, men ger en stor fördel genom att metallerna binds starkt in i kolstrukturen och på så sätt blir mindre biotillgängliga. Genom pyrolys minskar också volymen av materialet som behöver hanteras. Den applikation som ansågs mest lämplig, för kolet producerat ifrån finfraktionen av returträ, var kolfilter vid rening av avloppsvatten, som ersättning för aktivt kol. Då metallerna är starkare bundna i kolet, jämfört med ingående biomassa, anses kolet fortsatt lämpligt som filtermaterial. Vid jämförelse av miljöpåverkan och energiåtgång vid tillverkning av de olika alternativen framgick det att kol ifrån returträ har en mindre klimatpåverkan gentemot aktivt kol, samtidigt som adsorptionskapaciteten av olika metaller inte skiljde sig åt markant. För de kunder som skulle köpa in denna produkt finns även en fördel i en minskad inköpskostnad då pris för kol producerat från biomassa är ungefär hälften av priset för aktivt kol. Svårigheter som fortsatt måste hanteras är dock sluthanteringen av produkten efter användning, experimentella studier som bekräftar egenskaper och adsorptionskapacitet, samt en mer djupgående ekonomisk utvärdering för att säkerställa att potentiella tillverkare kan finna en lönsamhet i denna hantering av sitt restmaterial. / In different locations on the Swedish market, streams of residual products exist, which today usually are perceived as waste. To be able to reach a more circular society there is a hope of finding a way to use these residues in a new application, to see the material as a resource instead of waste. Biochar, a material with a high carbon content that is created through pyrolysis of biomass, has a potential to create a high-value outlet for some of these residues. In order to secure the quality of the produced biochar for the designated application, a method has been utilized that links the characteristics of the material, the characteristics and functions of the biochar and potential applications. The development of this kind of method can pose a way for potential manufacturers of biochar to find a new outlet for their residues and secure that the customers receive the right product for the attended application. An evaluation of the potential financial and environmental benefits that a biochar product can contribute with has also been conducted. After a series of interviews had been conducted, a residual product was chosen for further in-depth analysis; the fraction of wood waste that consists of finer particles. Today waste wood chips are generally being handled through incineration, however, possible changes regarding the handling of this material might soon emerge. The finer part of the material causes problems for the incineration through wearing and corrosion of equipment, as well as posing a fire hazard during storage. Due to these problems there are predictions that changed demands regarding the separation of this wood waste fraction, which can make up 20% of the material, could emerge. Changed demands from the recipient of the material can cause this residual stream to quickly appear in large quantities and without suitable outlet. Through examination of the characteristics of the material, assessments could be made regarding the characteristics of the produced biochar, which functions the char could fill and which applications that might be suitable. A connection could be made between the characteristics of the original material and the quality demands that exists for different applications. The most problematic characteristic of the material to overcome was the content of metals, originating from treated wood. To overcome this problem, manufacturing through flash-pyrolysis was suggested, were a large part of the ingoing material is converted into pyrolysis oil. Previous studies have shown that an oil with a low content of metals could be produced through this method, as the metals are instead concentrated in the char. Unfortunately, this means that the produced char does not qualify as biochar, due to a too high content of metals, but gives an advantage since the metals are less bioavailable through their bonds with the char structure. Through pyrolysis the quantity of material that needs to be handled is reduced. The most suitable application, for the char produced from the finer fraction from wood waste, was chosen to be as a carbon filter for cleaning of wastewater, as a substitution for activated carbon. Since the metals are more strongly bonded to the char, compared to the biomass, the char can still be considered suitable for a filter application. By comparison of environmental and energy demands at production of the two materials it was shown that wood waste char had less environmental impacts than activated carbon, while the adsorption capacity for different metals was not remarkably different between the two materials. For the customers, buying this product, there is also an advantage in the financial aspect due to the price of wood waste char being about half the size of the price for activated carbon. Difficulties that still needs to be overcome are the final handling of the product, after it has been used in the application, experimental studies that can confirm the characteristics and adsorption capacity, as well as a more thoroughly conducted financial evaluation to ensure that potential manufacturers can achieve financial gain in this way of handling their residues.
8

Biokol av avfallsfraktioner från IKEA:s möbeltillverkning / Biochar from waste fractions from IKEA’s furniture manufacturing

Ahmed, Safiya, Carlsson, Jesper, Blomberg, Jenny, Wiberg, Filip January 2021 (has links)
I dagens samhälle genereras en stor mängd avfall, där stora delar av avfallen förbränns vilket inte är gynnsamt för vare sig miljön eller klimatet. Därför finns det idag ett stort behov av klimatsmarta metoder där avfallen kan användas till att producera produkter som kan motverka klimatförändringar. Största delen av avfallen som genereras kommer från större företag som till exempel IKEA och de är i ständigt behov av nya metoder för att kunna använda sina avfall till klimatsmarta resurser. Att producera biokol av avfallen är en sådan klimatsmart metod, där biokolet är en hållbar produkt som både motverkar klimatförändringar och andra miljöproblem såsom övergödning. I denna rapport undersöktes två avfallsfraktioner från IKEA, vilka var Dust2k och Hogger. Det som undersöktes var hur lämpliga avfallsfraktionerna från IKEA är för produktion av biokol som skulle kunna appliceras i jordbruket samt hur denna lämplighet påverkas av avfallsfraktion och processförhållanden som används under pyrolysen. För att besvara frågeställningarna utfördes pyrolys på avfallsfraktionerna vid pyrolystemperaturerna 550℃ och 750℃, vilket gav fyra olika prover av biokol. Dessa prov analyserades med ett antal analysmetoder för att avgöra biokolets lämplighet som jordförbättrare och för att motverka klimatförändringar. De analyser som utfördes var elementaranalys, pH-mätning, termogravimetrisk analys (TGA), Brunauer-Emmet-Teller (BET) och svepelektronmikroskopi (SEM). Från pyrolysen och TGA kunde utbytet bestämmas, vilket uppgick till över 20% för samtliga prov. Elementaranalysen visade att biokol producerat av Hogger vid 900°C uppfyllde de EBC-krav som analyserades. Genom att mäta pH på avfallsfraktionerna samt biokolen gick det att se att pH höjdes under pyrolysen. Från BET och SEM erhölls information om porositet, ledningsförmåga och ytarea. Porositeten ökade med temperaturen och ledningsförmågan var högre för biokolet än biomassan. Ytarean låg mellan 347,2 m2/g och 422,8 m2/g och porvolymen mellan 0,173 cm3/g och 0,205 cm3/g. Det erhölls bäst egenskaper för avfallsfraktionen Hogger samt pyrolystemperaturen 750℃, vilket gjorde att slutsatsen att produktion av biokol från Hogger vid 750℃ lämpar sig bäst för användning som jordförbättrare kunde dras.
9

Granskning av avancerade pyrolysprocesser med lignocellulosa som råvara – tekniska lösningar och marknadsförutsättningar / Review of advanced pyrolysis processes with lignocellulosic feedstock - technical solutions and market conditions

Sundberg, Elisabet January 2017 (has links)
När befolkningsmängden ökar och teknisk och ekonomisk utveckling sker så påverkas även energianvändningen. Detta ställer krav på att energitillförseln är säker, stabil och hållbar. I dag är det fossila bränslen som dominerar globalt sett vilket får konsekvenser för den miljö vi lever i, och dessutom är det en ändlig, ohållbar resurs. Därför behöver dessa ersättas av hållbara alternativa energikällor, vilket också är centralt för miljömål i både Sverige och i den Europeiska Unionen. Förhoppningar finns om att processer som omvandlar lignocellulosa till fasta, flytande och gasformiga drivmedel och bränslen kan bidra till omställningen från fossilt till förnybart. I detta examensarbete som utförts i samarbete med KTH och IVL Svenska Miljöinstitutet har främst en av dessa omvandlingsprocesser undersökts närmare – pyrolys. Pyrolys är en termisk process som omvandlar lignocellulosa under temperaturer mellan cirka 300-650 °C under syrefria förhållanden. Tre faser kan erhållas. En gasfas som kan kondenseras till pyrolysolja, en fast fas som benämns biokol eller kol (beroende på slutanvändning) och en okondenserbar gasfas. Utbytet av produkter och kvalitet på dessa styrs främst av: typ av råvara, typ av reaktor och av vilka processförhållanden som råder. En undersökning av olika pyrolysprocessers status på marknaden har gjorts. Graden av kommersialisering och status i nuläget och hur framtiden kan se ut för både tekniken och produkterna har uppskattats genom litteraturstudier, internetsökningar och intervjuer med utvalda företag och personer med kunskaper inom pyrolys. Rapporten visar att pyrolys inte ännu är en helt kommersiell process, men att den har möjlighet att bli det med rätt förutsättningar. Det är svårt att säga när det sker, då det förutom fortsatt teknisk utveckling, ökad kunskap kring pyrolysprocessen och resultat av demonstrationer beror på olika externa faktorer. Yttre faktorer för kommersialisering av pyrolys i Sverige har identifierats som ökad säkerhet kring politiska styrmedel och beslut kring långsiktiga sådana (osäkerhet och kortsiktiga beslut skrämmer bort investerare), vikten av att etablera en värdekedja för att säkra investeringen, och priser på fossila drivmedel och biomassa som råvara. Processer för produktion av biokol verkar dock ha hunnit längre än de för pyrolysolja och är i ett tidigt stadium av kommersialisering.  Den enda tillämpningen som är fullt kommersiell idag är produktion av träkol och för detta tillämpas ofta traditionella satsvisa processer. Många möjliga användningsområden för produkterna finns där de har potential att reducera koldioxidutsläpp och bidra till en mer hållbar framtid. Standardisering och certifiering av produkter är då viktigt, samt demonstration av användning. Stabilisering och vidare förädling av pyrolysoljan är en annan viktig faktor för kommersialisering. Ännu verkar processer för katalytisk uppgradering inte vara tillräckligt tekniskt eller ekonomiskt utvecklade för att ge en konkurrenskraftig produkt, men forskning pågår kring detta. Integrering av processen ser ut att kunna öka energieffektiviteten, samt bidra till minskade produktionskostnader. / The population growth as well as a rapid technical and economic development globally affects the energy consumption. This requires a secure, stable and sustainable supply of energy. Today fossil fuels dominate globally and this results in environmental problems. Fossil fuels are also a finite, unsustainable resource. Thus, there is a need to replace fossil fuels with sustainable alternative sources of energy. This is also central for environmental goals both in Sweden and in the European Union. There are expectations that processes for the conversion of lignocellulosic biomass to solid, liquid and gaseous fuels can contribute to a transition from fossil to renewable fuels. In this thesis, carried out in collaboration between KTH and IVL Swedish Environmental Research Institute, one of the conversion processes is investigated in detail – pyrolysis. Pyrolysis is a thermal process that converts lignocellulose under anaerobic conditions at temperatures between about 300-650°C. Three phases can be obtained as products. A volatile which can be condensed into pyrolysis oil, a solid which may be termed biochar or charcoal depending on the end use, and a gas phase. The yield and the quality of the products is dependent upon the type of raw material, the type of reactor and the process conditions. An examination of the status of different pyrolysis processes on or on the way to the market has been made. The current degree of commercialization and what the future may look like for both the technology and the products have been assessed through literature studies, internet searches, and interviews with selected companies and individuals with expertise in pyrolysis.   This report reveals that continuous pyrolysis is not yet a fully commercial process, but that it has the opportunity to reach commercialization during the right conditions. It is difficult to say when it occurs, due to various external factors, continued technical development, increased knowledge of the pyrolysis process and results of the current demonstrations. In this report, several critical factors for the commercialization of pyrolysis in Sweden have been identified, e.g. increased stability for policy instruments and that will limit the risk for investments (uncertainty and short-term decisions frightens investors) and the establishment of a value chain for the products, i.e. a stable market. Prices on fossil fuels and biomass feedstock are also important factors. Processes for the production of biochar is in the early stages of commercialization, and seem to have reached further in their development than processes for pyrolysis oil. The only fully commercial application of pyrolysis today is the production of charcoal that commonly is performed in traditional batch-wise processes. There are many possible uses for the products in which they have the potential to reduce carbon emissions and contribute to a more sustainable future. Standardization and certification of products is important, and demonstration of the use. Stabilization and further upgrading of pyrolysis oil is another important factor for commercialization. It seems like processes for catalytic upgrading are not yet sufficiently technically or financially developed to be able to provide a competitive product. Research and development in this area are ongoing. Integration of the process with incumbent industrial processes seems to be able to offer increased energy efficiency and reduced production costs.
10

Framställning av gas för el- och värmeproduktion

Hector, Martin January 2008 (has links)
<p>Kan man producera brännbar gas av biobränsle i en småskalig anläggning? Kan</p><p>detta göras till en rimlig kostnad? Är det möjligt för en privatperson installera</p><p>förgasningsanläggningen själv eller krävs det en fackman? Skulle man kunna göra</p><p>gas av sitt trädgårdsavfall?</p><p>Svaret på dessa frågor är ja, det går.</p><p>Men om man vill göra det på ett säkert och miljövänligt sätt är svaret tyvärr nej.</p><p>Detta gäller i alla fall den anläggningen som detta arbete handlar om.</p><p>Tack vare Compower i Lund så kunde jag få tillgång till en kinesisk ”stalk gasifier”</p><p>Målet var att med denna panna framställa och analysera den gas som produceras</p><p>från biobränslen (gengas). Gasen skulle i bästa fall kunna användas i Compowers</p><p>microkraftverk för el och värmegenerering.</p><p>Efter installation och uppstart såg det lovande ut. Brännbar gas producerades efter</p><p>ca 20 min och gasen brann fint. Bränslet bestod då av en blandning mellan pellets</p><p>och flis.</p><p>Vid samtliga prov brinner gasen med klarblå låga och ingen synlig rök finns i</p><p>samband med förbränningen.</p><p>Pga. skrubber funktionen blir lågan pulserande</p><p>Det visade sig dock efter en stunds eldning att flisen var för blöt och tjärbildning</p><p>uppstod i pannan.</p><p>Efter nedstängning upptäcktes porositeter i fläkthusets gods och tjära hade läckt ut</p><p>på golvet.</p><p>Vid eldning nr. 2 användes endast pellets och det fungerade bra tills det visade sig</p><p>att askan från pelletsen tillsammans med tjäran bildade en sörja och chokade</p><p>luftgenomströmningen så att ingen gas kunde ta sig igenom utan tvingades ut</p><p>igenom luftintaget.</p><p>När vi senare kom in på emissionsmätningarna så visade det sig att vi inte kunde</p><p>mäta alla ämnena i gasen innan dess att vi förbrände den. Vi fick istället inrikta oss</p><p>på att mäta emissionerna efter det att vi tänt gasen. Detta gav oss rimligare världen</p><p>om än höga. Efter den sista eldningen, eldning nr 3, kunde vi konstatera att så länge</p><p>pannan eldades som den skulle så fungerade den bra, dock var CO-emissionerna</p><p>höga. När det gällde stängning så var det inte lika enkelt och det fanns även en stor</p><p>risk för utsläpp av koloxid vilket alltid bör undvikas.</p>

Page generated in 0.4256 seconds