• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 43
  • 16
  • 14
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gasification and combustion in fluidised bed

Rathbone, R. R. January 1986 (has links)
No description available.
2

Syngas Production from Biomass Pellets in a Downdraft Gasifier and the Removal of Oxygen from Syngas

Li, Rui 15 December 2012 (has links)
In pellet production, the parameters, such as densification pressure, temperature, feed moisture content, and coal and biomass concentration, that affected pelletizing and pellet quality were investigated. Gasification was carried out in a downdraft gasifier by using red oak hard wood as the feedstock. The raw syngas primarily contained carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), methane (CH4), and nitrogen (N2) as well as contaminants such as ash, water vapor, ammonia, and oxygen. Ash was removed with the filter bag. Water vapor was removed by desiccant absorption. Ammonia was removed by water scrubbing. Oxygen was removed by a CuO/CeO2-Al2O3 catalyst in a fixed-bed tubular reactor from 1% to less than 1ppm. After cleaning, the syngas was compressed up to 2000 psig pressure. The clean syngas was readily used for the Fischer-Tropsch catalytic reaction.
3

Extraction and chromatography of supercritical fluids

Kithinji, Jacob P. January 1989 (has links)
No description available.
4

Generic gasifier modelling : evaluating model by gasifier type

Visagie, Johannes Petrus 02 July 2009 (has links)
There are many different types of gasifiers used for commercial or research purposes. These gasifier varieties differ in a number of ways, such as the direction of material flow or the physical chemical contact between the different species. These differences affect the modelling procedure and philosophy required to describe the gasification processes accurately. Honeywell wishes to incorporate a generic gasifier model into their UNISIM DESIGN engine to simulate gasifiers accurately and calculate certain properties. Such a model does however not yet exist. Presented in this document is a summary of the similarities and mutual properties among the different coal gasifiers, which allow for certain generic modelling procedures to be followed. The paper also highlights the discrepancies among these gasifiers and the areas where different modelling approaches should be followed. Apart from the specific gasifier characteristics, the phenomena of reaction kinetics, heat transfer and mass transfer were also investigated to ascertain their significance on gasifiers and specifically gasifier modelling. By following the guidelines provided in this paper, it should be possible to develop a generic gasifier model in any modelling environment. / Dissertation (MEng)--University of Pretoria, 2008. / Chemical Engineering / unrestricted
5

Mathematical Model Of COREX Melter Gasifier

Pal, Subrata 09 1900 (has links) (PDF)
No description available.
6

Simulation of Coal Gasification Process Inside a Two-Stage Gasifier

Silaen, Armin 17 December 2004 (has links)
Gasification is a very efficient method of producing clean synthetic gas (syngas) which can be used as fuel for electric generation or chemical building block for petrochemical industries. This study performs detailed simulations of coal gasification process inside a generic two-stage entrained-flow gasifier to produce syngas carbon monoxide and hydrogen. The simulations are conducted using the commercial Computational Fluid Dynamics (CFD) solver FLUENT. The 3-D Navier-Stokes equations and seven species transport equations are solved with eddy-breakup combustion model. Simulations are conducted to investigate the effects of coal mixture (slurry or dry), oxidant (oxygen-blown or air-blown), wall cooling, coal distribution between the two stages, and the feedstock injection angles on the performance of the gasifier in producing CO and H2. The result indicates that coal-slurry feed is preferred over coal-powder feed to produce hydrogen. On the other hand, coal-powder feed is preferred over coal-slurry feed to produce carbon monoxide. The air-blown operation yields poor fuel conversion efficiency and lowest syngas heating value. The two-stage design gives the flexibility to adjust parameters to achieve desired performance. The horizontal injection design gives better performance compared to upward and downward injection designs.
7

Investigation of the Effects of Introducing Hydrodynamic Parameters into a Kinetic Biomass Gasification Model for a Bubbling Fluidized Bed

Andersson, Daniel, Karlsson, Martin January 2014 (has links)
Biomass is an alternative to fossil fuels that has a lower impact on the environment and is thus of great interest to replace fossil fuels for energy production. There are several technologies to convert the stored energy in biomass into useful energy and this thesis focuses on the process of gasification. The purpose of this thesis is to investigate how the prediction accuracy of gas composition in a kinetic model for fluidized bed gasifier is affected when hydrodynamic parameters are introduced into the model. Two fluidized bed gasifier models has therefore been set up in order to evaluate the affects: one model which only considers the kinetics of a gasifier and a second model which includes both the kinetics and the hydrodynamic parameters for a bubbling fluidized bed. The kinetic model is represented by an already existing kinetic model that is originally derived for a downdraft gasifier which has quite similar biomass gasification processes as fluidized bed gasifiers. Gas residence time differs between the two gasifier types and the model has thus been calibrated by introducing a time correction factor in order to use it for fluidized bed gasifiers and get optimum results. Two sets of experimental data were used for comparison between the two models. The models were compared by comparing the results of the predicted gas composition yield and the amount of unreacted carbon after the reactor at various equivalence ratios (ER). The result shows that the model that only considers reaction kinetics yields best agreement with the experimental data that have been used. One reasons as to why the kinetic model gives a better prediction of gas composition is due to the fact that there are higher reactant concentrations available for chemical reactions in the kinetic, in comparison to the combined model. Less reactant concentrations in the combined model is a result of the bed in the combined model consisting of two phases, according to the two-phase theory of fluidization that have been adapted. Both phases contain gases but the bubble phase is considered solid free, chemical reactions occur therefore only in the emulsion phase since the kinetic model is based on gas-solid reactions. The model that only contains reaction kinetics considers only one phase and all concentrations are available for chemical reactions. Higher char conversion is thus achieved in the model that only contains reaction kinetics and higher gas concentrations are produced.
8

Characterization of medium temperature gasifier pitch

Papole, Gedion John 15 November 2012 (has links)
Pitches are important precursors for carbon materials. They are usually obtained by thermal treatment of petroleum and coal fractions. Pitches have higher carbon content and are capable of developing into graphitisable carbons upon heat treatment. Petroleum pitches are generally less aromatic than coal tar pitches. Medium-temperature gasifier pitch (MTP), from Sasol’s Lurgi process, is a potential precursor for graphitisable carbon. MTP showed a high degree of solubility in several organic solvents, namely dimethylformamide, quinoline, tetrahydrofuran, pyridine, morpholine, benzene, toluene, xylene and acetone. It was virtually insoluble in n-hexane, cyclohexane, cyclohexanol, acetonitrile and formamide. MTP pitch was partially soluble in methanol and had a solubility limit of 40 g/l at ambient temperature. MTP samples were spiked with boron to make 1000 ppm B-containing samples. The boron distribution coefficient was defined as the ratio of the boron contents of the insoluble pitch residue to the methanol-soluble pitch extracts, using a mass balance. This justified the decision to define the apparent boron partition coefficients based on the boron content of the recovered pitch residues. 4-(dibenzofuranyl) boronic acid (DBA), 2 phenoxyphenyl boronic acid (PBA), p-tolylboronic acid (TBA) and phenylboronic acid (PLA) were retained the most in the residues after methanol extraction. Over 500 ppm of PBA, TBA and PLA were retained in the pitch residues following methanol extraction. The results showed that methanol extracted substituted boron acid model compounds. Methanol dissolved mostly low molecular mass/aliphatic species, which are not important for graphitisation. The thermomechanical analysis (TMA) results showed that MTP has a low softening point compared with the methanol-insoluble (MI) fractions. The attenuated total reflectance (ATR) results showed that the benzene-insoluble (BI), toluene-insoluble (TI) and MI fractions had more intense aromatic C–H stretching peaks than their corresponding soluble fractions. Elemental analysis and the solid-state 13C nuclear magnetic resonance (NMR) results revealed that the benzene-, toluene- and methanol-insoluble fractions are more aromatic than their corresponding soluble fractions. The order of the aromaticity index for the insoluble fractions was as follows: MTP<MI<TI<BI. Matrix-assisted laser desorption (MALDI) analysis of the mass distribution revealed that the majority of compounds in MTP and its soluble and insoluble fractions were in the low molecular mass range, i.e. 190–388 atomic mass units. The thermal analysis results showed that the benzene-, toluene- and methanol-insoluble fractions were thermally stable and had higher carbon yields than their corresponding soluble fractions. MTP was thermally more stable than the methanol-, toluene- and benzene-soluble fractions. Evaluation of the polycyclic aromatic hydrocarbons (PAHs) by gas chromatography-mass spectrometry (GC-MS) showed that the methanol-insoluble fractions had lower PAH contents than MTP and MI.   Copyright / Dissertation (MSc)--University of Pretoria, 2012. / Chemistry / unrestricted
9

Optimization of the performance ofdown-draft biomass gasifier installedat National Engineering Research &amp;Development (NERD) Centre ofSri Lanka

Gunarathne, Duleeka January 2012 (has links)
Using biomass gasification to produce combustible gas is one of the promising sustainable energy optionsavailable for many countries. At present, a few small scale community based power generation systemsusing biomass gasifiers are in operation in Sri Lanka. However, due to the lack of proper knowledge, thesesystems are not being operated properly in full capacity. This stands as an obstacle for further expansionof the use of gasifier technology.The objective of this study was to identify the most influential parameters related to fuel wood gasificationwith a down draft gasifier in order to improve the gasification processes.A downdraft gasifier of 10kW electrical capacity was used to study the effect of equivalent ratio (Actual airfuel ratio to Stoicheometric air fuel ratio: ER) on the specific gas production, the heating value of gasproduced and the cold gas efficiency using three throat diameters (125mm, 150mm and 175mm). Six trialswere carried out for each throat diameter by varying the supply air flow to change the ER. The gassamples were tested for their compositions under steady state operating conditions. Using mass balancesfor C and N, the cold gas efficiencies, calorific values and the specific gas production rates weredetermined.The results showed that with all throat diameters the calorific value of gas reduced with the increase ofER. The cold gas efficiency reduced with ER in a similar trend for all three throat diameters. The specificgas production increased with ER under all throat diameters.Calorific value and specific gas production are changing inversely proportional manner. The ER to beoperated is depends on the type of application of the gas produced and engine characteristics. When alarge heat is required, low ER is to be used in which gas production is less. In the opposite way, when alarge amount of gas is needed, higher value of ER is recommended.
10

Studies on solid oxide fuel cells for biomass utilizations / バイオマスの利用に向けた固体酸化物形燃料電池に関する研究

Yamaguchi, Shimpei 24 November 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23577号 / 工博第4932号 / 新制||工||1770(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 江口 浩一, 教授 阿部 竜, 教授 岩井 裕 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM

Page generated in 0.0436 seconds