• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 94
  • 94
  • 94
  • 94
  • 94
  • 17
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Synthesis and characterisation of layered hydroxy anion exchange materials

McIntyre, Laura J. January 2009 (has links)
This thesis concerns the synthesis and characterisation of layered hydroxy anion exchange materials. The incorporation of rare-earth cations into these materials offers the potential to combine the optical, magnetic and catalytic properties of the lanthanides with the flexibility of intercalation hosts. A review of the literature surrounding intercalation chemistry and materials is presented in Chapter 1. Here the synthesis, structure and anion exchange reactions of layered hydroxides and their applications in the fields of catalysis, separation science, polymer additives and biological storage and delivery are discussed. Chapter 2 describes the hydrothermal synthesis and anion exchange capacity of new anion exchange host lattices containing the smaller lanthanide cations, with the composition Ln2(OH)5NO3•1.5H2O (Ln = Y, Gd - Lu), with Gd marking a limiting cation radius. Anion exchange reactions are facile with a wide range of organic carboxylates and sulfonates and investigations into their selectivity and optical properties have been carried out. This family has also been expanded to include Ln2(OH)5X•1.5H2O (X = Cl, Br; Ln = Y, Dy, Er, Yb) and crystal structures for orthorhombic and monoclinic Yb2(OH)5Cl•1.5H2O are reported. The findings of a time-resolved in situ X-ray powder diffraction study form the basis of Chapter 3. Three different phases with the layer composition [Yb2(OH)5]+; Yb2(OH)5NO3•1.5H2O d = 9.2 Å (1), Yb2(OH)5NO3•2H2O d = 9.4 Å (2) and Yb2(OH)5NO3•H2O d = 8.5 Å (3) were observed and shown to ultimately transform to a 3D structure Yb4O(OH)9NO3 d = 8.0 Å (4). Single crystal structures are given for phases 2 and 3, and the structure of 4 has been refined. The effects of temperature and metal concentration on phase formation have been investigated and compared with ex situ results. A full kinetic analysis is presented including the activation energy for the formation of phase 2. The values extracted indicate that the mechanism of crystallisation is phase boundary controlled. In Chapter 4 the room temperature precipitation synthesis of a related family of anion exchange host lattices with the composition, Ln2(OH)5NO3•H2O (Ln = Y, Eu–Er) and MgAl layered double hydroxides incorporating the precious metals Ru and Pd are discussed. Details of synthetic routes to the novel materials described and the methods of characterisation used are given in Chapter 5.
12

Developments in dynamic field gradient focusing : microfluidics and integration

Wray, Thomas January 2012 (has links)
Advances in modern science require the development of more robust and improved systems for electroseparations in chromatography. In response, the progress of a new analytical platform is discussed. DFGF (Dynamic Field Gradient Focusing) is a separation technique, first described in 1998, which exploits the differences in electrophoretic mobility and hydrodynamic area of analytes to result in separation. This is achieved by taking a channel and applying a hydrodynamic flow in one direction and a counteracting electric field gradient acting in the opposite direction, resulting in analytes reaching a focal point according to their electrophoretic mobility. Work through this project has seen innovations to improve existing DFGF devices, including the design and manufacture of a novel packing material, while developing the latest DFGF system. This incorporates a microfluidic separation channel, eliminating the need for packing material or monolith. The new microfluidic device also features whole-on-column UV detection. Improvements through the developments of this device are discussed, most notably the utilisation of a new rapid prototyping technique. Examples of applications undertaken with the new device are demonstrated including novel samples and integration with mass spectrometry and 2D-HPLC.
13

Polymer routes toward designing gold nanostructures

Schaeffer, Nicolas January 2010 (has links)
The formation of small metallic particles has been intensively investigated in the last few decades because of the unique properties that they exhibit on the nanometer scale. A handful of reliable and straightforward synthetic procedures are used routinely for their manufacture. The most widely applied procedures are variations of the Turkevich–Frens citrate reduction route that allow the manufacture of water–soluble, relatively monodisperse particles in the c.a. 5 to 50 nm range, or the Brust–Shiffrin method that leads, after reduction of a gold precursor in a two phases liquid/liquid system, to the formation of hydrophobic nanoparticles in the c.a. 3 to 8 nm. However, the controlled manufacture of well–defined water–soluble particles in the sub 5 nm scale is still challenging, and most of the reported methods for their preparation involve multip–step preparation or cumbersome size separation procedure, adding costly and time consuming stages to the synthesis. Thus, a simple, robust protocol for the gramscale preparation of uniform colloidal gold below 5 nm is of broad practical value. Herein, the synthesis of near monodisperse gold nanoparticles using series of watersoluble polymeric ligands containing a thiol and/or a thioether is described. The size of the so–formed particles can be adjusted between one and five nanometres by varying the polymer/gold ratio and the colloidal suspensions are stable in aqueous conditions because of the nature of their polymeric protective monolayer. Those polymeric structures have been optimized to control the growth of the particles, leading to an unprecedented narrow size distribution. The near monodispersity of the particles, their stability in aqueous conditions, and their one–pot synthesis all make this method an attractive and versatile synthetic route. Furthermore, in extending the size–range tunability of some of those polymer stabilized gold nanoparticles to the sub 2 nm range, a transition between non–fluorescent and fluorescent nanoparticles is observed. This photophysical property is clearly size–dependant and fluorescence switching is detected for polymer-stabilized gold clusters below 1.7 nm in size. Detailed characterization indicates that the most fluorescent nanomaterial has a 3% quantum yield and is related to the presence of 1.1 nm gold core and a 6.9 nm hydrodynamic radius gold clusters and is not due to a polymer effect, or to the formation of a gold(I) complex.
14

The role of convexity in the corner enhancement effect, in visual short-term memory, in perception of symmetry, and in shape interference

Mohamed Helmy Abdallah, May January 2012 (has links)
Contour curvature information has been shown to have an impact on the visual perception of shape. We have conducted studies on perception of convexity and concavity in relation to memory and attention. Previous studies (Badcock & Westheirner, 1985; Krose & Julesz, 1989; Nakayama & Mackeben, 1989) have proposed that visual space is influenced by corners. Recent studies by Cole, Burton and Gellatly (2001) found that reaction times were faster for a stimulus located in the region of a corner of a figure. Cole et al (2001) believe that the role of corners is greater than that of straight edges, due to corners receiving a higher distribution of attentional resources relative to straight edges. The first part of this thesis considers the role figure-ground plays in the corner enhancement effect. Results demonstrate that the corner enhancement effect is only found when the probe is presented on the surface that owns the corner. Thus the corner enhancement effect is present for both concave and convex vertices. However, the effect disappears when the probe lay on the surface that does not own the corner. The second series of experiments made use of a shape with multiple concave or convex features as part of a change detection task, in which only a single feature could change. The results provided no evidence to suggest that convexities are special in visual short-term memory. Though coding of convexities as well as concavities provided a small advantage over an isolated contour. This finding is in accordance with the well documented effect of closure on shape processing (Elder & Zucker, 1993). It has been reported that deviations from symmetry were easier to detect when carried by convexities compared to deviations carried by concavities (Hulleman & Olivers, 2007). We extended this investigation to shapes that were repeated instead of reflected, to test whether there is a specific convexity advantage for bilateral symmetry. The results supported a convexity advantage for repetitions but not for reflections. Possible explanations for this are discussed. The final series of experiments involved a shape interference task; observers responded to circles or square in the context of irrelevant circles and squares. The findings suggest that interference between the shapes is much stronger when the contours that define the shapes belong to the same surface. In summary, we conclude that convexity and concavity are important aspects of shape analysis and representation, but there is no basic difference in how convexities and concavities are attended to, both in the corner enhancement effect, and in visual-short term memory. However, convexity plays a role in some perceptual tasks for example, when analyzing complex shapes observers may adopt strategies that focus on the convexities.
15

Multifunctional magnetic nanoparticles for biomedical applications

Olariu, Cristina January 2012 (has links)
The objective of this thesis was to develop and prepare multifunctional magnetic nanoparticles with targeting and bimodal imaging capabilities for cancer diagnostic applications. Superparamagnetic iron oxide nanoparticles (SPIONs) were the key component in the multifunctional nanoparticles prepared. In a first approach, alkoxysilane ligands were used to introduce functional groups such as amino, bromo, iodo, nitrile, and vinyl on the surface of SPIONs. Physicochemical analyses showed that each silane ligand formed a dense silane monolayer covalently attached to the nanoparticle surface. The amino-functionalised SPIONs were successfully modified yielding amino and carboxylic acid-bifunctionalised SPIONs using a succinylation reaction. This nanoparticle system showed no cytotoxicity during cell viability evaluations. Further conjugation with fluorescent dye and antibodies produced targeted bimodal optical/magnetic resonance imaging (MRI) agents, confirmed by good contrast enhancement capabilities. The conjugated antibody successfully enabled the targeted delivery of SPIONs to pancreatic cancer cells in vitro. The targeting efficiency and the nanoparticle cellular uptake were monitored using fluorescence and confocal microscopy. In a second approach, hydrophobic and monodisperse SPIONs were coated with amphiphilic polyoxazoline to produce colloidally stable magneto-micelles. This magneto-micellar system showed high colloidal stability in water, phosphate buffered saline as well as at different pH values. Fluorescent dyes were successfully co-assembled into the magneto-micelles providing for the localisation of the nanoparticles in the cells by confocal microscopy. Antibodies conjugated to nontoxic magneto-micelles allowed for binding to specific receptors present on pancreatic cancer cells. The targeting efficiency and accumulation of the antibody labelled magneto-micelles into pancreatic cancer cells was evaluated using live cell confocal microscopy. Their performance as MRI contrast agents was evaluated using relaxivity measurements and it was shown that the clustering effect of the SPIONs within the core of the micelle is particularly favourable for enhancing the contrast on MRI images. Both approaches provided efficient routes of preparation of multifunctional platforms to achieve the desired targeting and bimodal imaging capabilities.
16

Rhodium-catalysed allylic substitution with an acyl anion equivalent : asymmetric construction of acyclic quaternary carbon stereogenic centres

Oliver, Samuel January 2012 (has links)
The asymmetric construction of substituted carbonyl compounds, particularly those containing α-quaternary carbon stereogenic centres, remains a significant area of interest in organic chemistry. This can largely be attributed to the ubiquity and versatility of these compounds as synthetic intermediates, and the presence of such motifs in a range of biologically active pharmaceutical agents and natural products. In this context, the transition metal-catalysed allylic substitution provides an extremely powerful tool for the asymmetric construction of a range of C-C, C-N and C-O bonds, and has found significant application in the synthesis of substituted carbonyl compounds. The overall utility of these methods is described in the introductory review, which seeks to compare and contrast two alternative bond forming strategies for the asymmetric construction of these units via allylic substitution. While this work is generally dominated by the asymmetric allylic alkylation of unstabilised enolates, these reactions are often limited by the numerous challenges associated with the regio- and stereoselective formation of an enolate nucleophile, product racemisation and polyalkylation, and their relatively narrow substrate scope. In contrast, the transition metal-catalysed allylic substitution with an acyl anion equivalent has the potential to provide a range of α-substituted carbonyl compounds via a fundamentally different bond forming event, in which the acyl functionality is installed directly into the allylic framework. Despite the numerous potential advantages that are afforded by this approach, a general method for the regio- and stereoselective transition-metal catalysed allylic acylation of substituted electrophiles has yet to be reported. Chapter 2 describes the development of a novel regio- and stereospecific rhodium-catalysed allylic substitution reaction, which utilises a trialkylsilyl-protected cyanohydrin as a convenient acyl anion equivalent. Following a brief introduction to the rhodium-catalysed allylic substitution reaction, this chapter is organised into three distinct sections. The first of these outlines the identification of a suitable nucleophile, and the subsequent development of reaction conditions for the regioselective alkylation of tertiary allylic carbonates with a range of stabilised aryl cyanohydrins. The stereospecific variant of this transformation, which involves the direct conversion of an enantiomerically enriched acyclic tertiary allylic alcohol to the corresponding α-quaternary substituted aryl ketone, is then described. Finally, the expansion of this methodology to the preparation of more synthetically useful α,β-unsaturated ketones, and preliminary investigations towards the application of secondary allylic carbonates, are outlined. Overall, this method provides a fundamentally novel bond construction towards the synthesis of α-quaternary substituted carbonyl compounds, and circumvents many of the problems associated with conventional enolate alkylation reactions. Thus, we anticipate that the methodology outlined herein will find significant application in target directed synthesis, particularly in the preparation of complex bioactive pharmaceuticals and natural products that contain quaternary carbon stereogenic centres.
17

Immobilisation of polyazamacrocycles into porous materials

Richards, Emma January 2012 (has links)
The synthesis and characterisation of functionalised polyazamacrocycles and their subsequent immobilisation into porous materials were investigated and reported in this thesis. The incorporation of polyazamacrocycles into porous materials offers the potential to enhance their biomimetic and environmental properties with tuneable microenvironments around the macrocycles. Nine polyazamacrocycles have been synthesised that are functionalised with vinyl, pyridyl, carboxylate and iodide pendant arms in order to immobilise them into porous materials. Of these macrocycles nine metal complexes were successfully synthesised and their crystal structures are discussed. The most interesting of these metal complexes are complex 2, a cyclam based metal complex and complex 7, a [12]aneN3 based metal complex which both have coordinated water molecules and therefore are activated for hydrolase activity. Polyazamacrocycles have successfully been immobilised into organic cross-linked polymers using polar and non-polar cross-linkers and a systematic investigation has taken place in order to determine the effects of the nature and amount of porogen and the concentration of macrocycle within the polymer on the porous properties of the polymer. These effects include BET surface area, shape and size distributions of pores, and CO2 uptake capacities. The effect of incorporation of metal complexes and metal ions is also discussed. It was found that with non-polar based polymers, BET surface areas were find to be higher when non-polar porogens were employed and decrease with increasing polarity of the porogen. However, the nature of the macrocycle also plays an important role in the porosity of the resulting polymers. Zinc and copper metal organic frameworks containing cyclam based macrocycles with pyridyl pendent arms have been synthesised with 2D layered structures. The crystal structures reveal that triflate and hexafluorophosphate counterions play an important role in stabilisation of the framework but with the disadvantage of blocking possible porosity.
18

Magnetic resonance imaging of flow instabilities

Rose, Heather E. L. January 2013 (has links)
This research project investigated the formation of flow instabilities and probed this formation using Magnetic resonance imaging. The coupling of hydrodynamic instabilities was investigated with regards to four different systems. The formation of 3-dimensional viscous fingers has been investigated in a packed bed using magnetic resonance imaging. Fingering patterns are produced as a result of two different chemically reactive interfaces and one non-reactive interface. By the formation of a highly viscous wormlike micelle solution formed at the interface between solutions of cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal) viscous fingers were produced under flow. Both a non-reactive and reactive system with a pre-existing viscosity gradient, which remains unchanged throughout the experiment, is studied. The structure of the fingering patterns, which were found to be sensitive to flow rate, were analysed using histogram plots characterising the distribution of pixels containing High signal fluids. We also present an alternative method for plume visualisation and direct measurement of velocities within a solution of Chlamydomonas nivalis cells. We have carried out experiments to investigate the applicability of magnetic resonance imaging to investigate behaviour in this system.
19

The analysis and imaging of lipids from complex samples by matrix-assisted laser desorption/ionisation mass spectrometry

Carter, Claire Louise January 2012 (has links)
Matrix assisted laser desorption/ionisation mass spectrometry (MALDI-MS) is a relatively new technique for imaging lipids directly in tissue, with useful applications in disease state profiling, bacterial typing and forensics. This thesis describes optimisation and evaluation of sample preparation procedures for MALDI-MS and MS imaging of lipids in complex samples. Direct analysis of fresh samples is shown to result in higher ion counts than analysis of desiccated tissues but thickness of tissue sections was shown to have a minimal effect on imaging results. Extracts of lipids from rat brain samples were used to optimise matrix selection for MALDI-MS of lipids. DHB was found to be the optimum matrix, in accordance with literature, for extract analysis; however, superior imaging results were obtained using αCHCA. An automated matrix deposition robot is compared to a manual airspray method. The robotic method demonstrated enhanced sensitivity, superior image resolution and reduced variability between different sample plates compared to traditional manual methods. Optimised methods were applied to analysis of formalin fixed tissue. Successful imaging of phospholipids in fixed samples is demonstrated for the first time. Lipids in formalin fixed samples were found to be predominantly detected as sodium adducts (due to high levels of sodium in the buffered formalin). This was exploited to offer enhanced structural information afforded by collision induced dissociation (CID) of sodium rather than potassium adducts, which is well reported to increase the number of useful product ions detected. Methods for analysis and imaging of non-mammalian lipids by MALDI-MS were considered. Members of the Mycobacterium tuberculosis complex (MTBC) are important human pathogens. The cell wall of mycobacteria contains a number of lipids, which contribute largely to the virulence of pathogenic species. Preliminary research showed relatively poor sensitivity for these complex lipids but improved results were obtained by direct analysis of TLC plates. A binary matrix solvent system was developed offering considerably improved sensitivity. Successful detection of numerous lipids species involved in virulence, along with several previously unreported molecules is presented.
20

Synthesis and application of stereogenic nitrogen-containing ammonium salts as phase-transfer catalysts

Dutton, Mark Jason January 2016 (has links)
The chirality of nitrogen was at the forefront of chemistry over 110 years ago. Since then it has been widely under-acknowledged as a potential chirality source in organic synthesis. This thesis demonstrates the diastereoselective formation of stereogenic nitrogen-containing ammonium salts. Over 150 compounds were synthesised and employed as phase-transfer catalysts in order to assess the chiral-at-nitrogen influence on the outcome of two common phase-transfer-catalysed reactions. Several X-ray crystal structures of single diastereoisomer chiral-at-nitrogen ammonium salts were isolated as well as the synthesis of a library of secondary and tertiary amines.

Page generated in 0.1103 seconds