• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 12
  • 12
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Yb:tungstate waveguide lasers

Bain, Fiona Mair January 2010 (has links)
Lasers find a wide range of applications in many areas including photo-biology, photo-chemistry, materials processing, imaging and telecommunications. However, the practical use of such sources is often limited by the bulky nature of existing systems. By fabricating channel waveguides in solid-state laser-gain materials more compact laser systems can be designed and fabricated, providing user-friendly sources. Other advantages inherent in the use of waveguide gain media include the maintenance of high intensities over extended interaction lengths, reducing laser thresholds. This thesis presents the development of Yb:tungstate lasers operating around 1μm in waveguide geometries. An Yb:KY(WO₄)₂ planar waveguide laser grown by liquid phase epitaxy is demonstrated with output powers up to 190 mW and 76 % slope efficiency. This is similar to the performance from bulk lasers but in a very compact design. Excellent thresholds of only 40 mW absorbed pump power are realised. The propagation loss is found to be less than 0.1 dBcm⁻¹ and Q-switched operation is also demonstrated. Channel waveguides are fabricated in Yb:KGd(WO₄)₂ and Yb:KY(WO₄)₂ using ultrafast laser inscription. Several of these waveguides lase in compact monolithic cavities. A maximum output power of 18.6 mW is observed, with a propagation loss of ~2 dBcm⁻¹. By using a variety of writing conditions the optimum writing pulse energy is identified. Micro-spectroscopy experiments are performed to enable a fuller understanding of the induced crystal modification. Observations include frequency shifts of Raman lines which are attributed to densification of WO₂W bonds in the crystal. Yb:tungstate lasers can generate ultrashort pulses and some preliminary work is done to investigate the use of quantum dot devices as saturable absorbers. These are shown to have reduced saturation fluence compared to quantum well devices, making them particularly suitable for future integration with Yb:tungstate waveguides for the creation of ultrafast, compact and high repetition rate lasers.
12

Compact current pulse-pumped GaAs–AlGaAs laser diode structures for generating high peak-power (1–50 watt) picosecond-range single optical pulses

Lanz, B. (Brigitte) 18 October 2016 (has links)
Abstract Although gain-switching is a simple, well-established technique for obtaining ultrashort optical pulses generated with laser diodes, the optical energy in a pulse achievable from commercial structures using this technique is no more than moderate and the ‘spiking’ behaviour seen at turn-on is likely to evolve into trailing oscillations. This thesis investigates, develops and improves laser diodes in order to offer experimentally verified solutions for maximizing the optical energy so as to achieve a peak power of several watts in a single optical pulse of picosecond-range duration in the gain-switching operation regime, and for suppressing the energy located in any trailing pulses to a negligible level relative to the total optical pulse energy. This was addressed by means of either (i) an ultrashort pump current pulse with an amplitude range ~(1–10) A or (ii) custom laser diode structures, both options being capable of operating uncooled at room temperature (23±3°C). For the first solution a unique superfast gallium arsenide (GaAs) avalanche transistor was utilized as a switch in order to achieve an injection current pulse with a duration of < 1 ns, which is short enough to generate only a first optical ‘spike’ when pumping a commercial laser diode. The most promising structure with regard to the second solution was an edge-emitting semiconductor laser having a strongly asymmetric broadened double heterostructure with a relatively thick active layer. Laser pulses with full width at half maximum (FWHM) of ~100 ps and an optical energy of >3 nJ but with some trailing oscillations were achieved in experiments employing injection current pulses in the nanosecond range with an amplitude of ≤17 A, generated using inexpensive silicon (Si) electronics. The performance was improved by introducing a saturable absorber (SA) into the laser cavity, which suppressed the formation of trailing oscillations, resulting in a single optical pulse. / Tiivistelmä ”Gain switching” (vahvistuskytkentä) on tunnettu tekniikka lyhyiden (<100 ps) optisten pulssien generoimiseen laserdiodeilla. Kaupallisia laserdiodirakenteita käyttäen optinen energia rajoittuu kuitenkin 10…100 pJ:n tasolle. Tällöinkin, erityisesti suurilla energiatasoilla, optisessa pulssissa ilmenee voimakkaita jälkioskillaatioita. Tässä väitöskirjassa tutkittiin ja kehitettiin kokeellisesti varmennettuja laserdiodilähetinrakenteita tavoitteena saavuttaa >1 nJ:n optisen pulssin energia ja ~100 ps:n pulssinpituus gain-switching -toimintamoodissa. Tavoitteena oli myös minimoida jälkipulssien energia. Tutkimuksen pääsisältönä on kaksi toimintaperiaatetta: Toisessa tekniikassa päähuomio kohdistuu laseridiodin virta-ajuriin, johon kehitettiin elektroniikka, joka kykenee tuottamaan nopeita virtapulsseja laajalla pulssivirta-alueella. Virtapulssin nopeuden kasvattamisen (<1 ns) osoitettiin edistävän gain switching -ilmiötä. Toisena tekniikkana tutkittiin räätälöityä laserdiodirakennetta, joka sisäisen toimintansa perusteella tuottaa dynaamisessa ohjaustilanteessa tehokkaan ja nopean laserpulssin. Kummankin periaatteen osoitettiin toimivan huonelämpötilassa (23±3°C) ilman erillistä jäähdytystä. Ensimmäisessä ratkaisussa käytettiin nopeaa gallium-arsenidi (GaAs) -avalanchetransistoria virtakytkimenä, jolla saavutettiin <1 ns FWHM injektiovirtapulssi 10 A:n virtatasolla. Tällainen virtapulssi on riittävän lyhyt virittämään ”gain switching” -ilmiön nJ-energiatasolla. Lupaavin rakenne toiseksi ratkaisuksi oli reunaemittoiva puolijohdelaseri, jossa epäsymmetrinen aaltoputki ja aktiivinen alue ovat sijoitettu normaalista laserdiodirakenteesta poiketen rinnakkain. Tällä rakenteella voitiin tuottaa ~100 ps levyisiä (FWHM) ja >3 nJ optisen kokonaisenergian omavia laserpulsseja edullisella pii-pohjaisella (Si) elektroniikalla luoduilla 1.5–2 ns:n (FWHM) ≤17 A injektiovirtapulsseilla. Suorituskykyä saatiin edelleen parannettua istuttamalla saturoiva absorbaattori (SA) laserin optiseen onteloon. Tämän osoitettiin vähentävän jälkioskillaatioiden muodostumista.

Page generated in 0.0309 seconds