Spelling suggestions: "subject:"andswitching"" "subject:"bandswitching""
1 |
Compact current pulse-pumped GaAs–AlGaAs laser diode structures for generating high peak-power (1–50 watt) picosecond-range single optical pulsesLanz, B. (Brigitte) 18 October 2016 (has links)
Abstract
Although gain-switching is a simple, well-established technique for obtaining ultrashort optical pulses generated with laser diodes, the optical energy in a pulse achievable from commercial structures using this technique is no more than moderate and the ‘spiking’ behaviour seen at turn-on is likely to evolve into trailing oscillations.
This thesis investigates, develops and improves laser diodes in order to offer experimentally verified solutions for maximizing the optical energy so as to achieve a peak power of several watts in a single optical pulse of picosecond-range duration in the gain-switching operation regime, and for suppressing the energy located in any trailing pulses to a negligible level relative to the total optical pulse energy. This was addressed by means of either (i) an ultrashort pump current pulse with an amplitude range ~(1–10) A or (ii) custom laser diode structures, both options being capable of operating uncooled at room temperature (23±3°C).
For the first solution a unique superfast gallium arsenide (GaAs) avalanche transistor was utilized as a switch in order to achieve an injection current pulse with a duration of < 1 ns, which is short enough to generate only a first optical ‘spike’ when pumping a commercial laser diode. The most promising structure with regard to the second solution was an edge-emitting semiconductor laser having a strongly asymmetric broadened double heterostructure with a relatively thick active layer. Laser pulses with full width at half maximum (FWHM) of ~100 ps and an optical energy of >3 nJ but with some trailing oscillations were achieved in experiments employing injection current pulses in the nanosecond range with an amplitude of ≤17 A, generated using inexpensive silicon (Si) electronics. The performance was improved by introducing a saturable absorber (SA) into the laser cavity, which suppressed the formation of trailing oscillations, resulting in a single optical pulse. / Tiivistelmä
”Gain switching” (vahvistuskytkentä) on tunnettu tekniikka lyhyiden (<100 ps) optisten pulssien generoimiseen laserdiodeilla. Kaupallisia laserdiodirakenteita käyttäen optinen energia rajoittuu kuitenkin 10…100 pJ:n tasolle. Tällöinkin, erityisesti suurilla energiatasoilla, optisessa pulssissa ilmenee voimakkaita jälkioskillaatioita.
Tässä väitöskirjassa tutkittiin ja kehitettiin kokeellisesti varmennettuja laserdiodilähetinrakenteita tavoitteena saavuttaa >1 nJ:n optisen pulssin energia ja ~100 ps:n pulssinpituus gain-switching -toimintamoodissa. Tavoitteena oli myös minimoida jälkipulssien energia. Tutkimuksen pääsisältönä on kaksi toimintaperiaatetta: Toisessa tekniikassa päähuomio kohdistuu laseridiodin virta-ajuriin, johon kehitettiin elektroniikka, joka kykenee tuottamaan nopeita virtapulsseja laajalla pulssivirta-alueella. Virtapulssin nopeuden kasvattamisen (<1 ns) osoitettiin edistävän gain switching -ilmiötä. Toisena tekniikkana tutkittiin räätälöityä laserdiodirakennetta, joka sisäisen toimintansa perusteella tuottaa dynaamisessa ohjaustilanteessa tehokkaan ja nopean laserpulssin. Kummankin periaatteen osoitettiin toimivan huonelämpötilassa (23±3°C) ilman erillistä jäähdytystä.
Ensimmäisessä ratkaisussa käytettiin nopeaa gallium-arsenidi (GaAs) -avalanchetransistoria virtakytkimenä, jolla saavutettiin <1 ns FWHM injektiovirtapulssi 10 A:n virtatasolla. Tällainen virtapulssi on riittävän lyhyt virittämään ”gain switching” -ilmiön nJ-energiatasolla. Lupaavin rakenne toiseksi ratkaisuksi oli reunaemittoiva puolijohdelaseri, jossa epäsymmetrinen aaltoputki ja aktiivinen alue ovat sijoitettu normaalista laserdiodirakenteesta poiketen rinnakkain. Tällä rakenteella voitiin tuottaa ~100 ps levyisiä (FWHM) ja >3 nJ optisen kokonaisenergian omavia laserpulsseja edullisella pii-pohjaisella (Si) elektroniikalla luoduilla 1.5–2 ns:n (FWHM) ≤17 A injektiovirtapulsseilla. Suorituskykyä saatiin edelleen parannettua istuttamalla saturoiva absorbaattori (SA) laserin optiseen onteloon. Tämän osoitettiin vähentävän jälkioskillaatioiden muodostumista.
|
2 |
High-Precision, Mixed-Signal Mismatch Measurement of Metal-Oxide-Metal Capacitors and a 13-GHz 5-bit 360-Degree Phase ShifterBustamante, Danilo 05 August 2020 (has links)
A high-precision mixed-signal mismatch measurement technique for metal-oxide metal (MoM) capacitors as well as the design of a 13-GHz 5-bit 360-degree phase shifter are presented. This thesis presents a high-precision, mixed-signal mismatch measurement technique for metal-oxide–metal capacitors. The proposed technique incorporates a switched-capacitor op amp within the measurement circuit to significantly improve the measurement precision while relaxing the resolution requirement on the backend analog-to-digital converter (ADC). The proposed technique is also robust against multiple types of errors. A detailed analysis is presented to quantify the sensitivity improvement of the proposed technique over the conventional one. In addition, this thesis proposes a multiplexing technique to measure a large number of capacitors in a single chip and a new layout to improve matching. A prototype fabricated in 180 nm CMOS technology demonstrates the ability to sense capacitor mismatch standard deviation as low as 0.045% with excellent repeatability, all without the need of a high-resolution ADC. The 13-GHz 5-bit 360-degree phase shifter consists of 2 stages. The first stage utilizes a delay line for 4-bit 180-degree phase shift. A second stage provides 1-bit 180-degree phase shift. The phase shifter includes gain tuning so as to allow a gain variation of less than 1 dB. The design has been fabricated in 180 nm CMOS technology and measurement results show a complete 360◦ phase shift with an average step size of 10.7◦ at 13-GHz. After calibration the phase shifter presented an output gain S21 of 0.5 dB with a gain variation of less than 1 dB across all codes at 13-GHz. The remaining s-parameter testing showed a S22 and S11 below -11 dB and a S12 below -49 dB at 13 GHz.
|
Page generated in 0.0449 seconds