• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compact current pulse-pumped GaAs–AlGaAs laser diode structures for generating high peak-power (1–50 watt) picosecond-range single optical pulses

Lanz, B. (Brigitte) 18 October 2016 (has links)
Abstract Although gain-switching is a simple, well-established technique for obtaining ultrashort optical pulses generated with laser diodes, the optical energy in a pulse achievable from commercial structures using this technique is no more than moderate and the ‘spiking’ behaviour seen at turn-on is likely to evolve into trailing oscillations. This thesis investigates, develops and improves laser diodes in order to offer experimentally verified solutions for maximizing the optical energy so as to achieve a peak power of several watts in a single optical pulse of picosecond-range duration in the gain-switching operation regime, and for suppressing the energy located in any trailing pulses to a negligible level relative to the total optical pulse energy. This was addressed by means of either (i) an ultrashort pump current pulse with an amplitude range ~(1–10) A or (ii) custom laser diode structures, both options being capable of operating uncooled at room temperature (23±3°C). For the first solution a unique superfast gallium arsenide (GaAs) avalanche transistor was utilized as a switch in order to achieve an injection current pulse with a duration of < 1 ns, which is short enough to generate only a first optical ‘spike’ when pumping a commercial laser diode. The most promising structure with regard to the second solution was an edge-emitting semiconductor laser having a strongly asymmetric broadened double heterostructure with a relatively thick active layer. Laser pulses with full width at half maximum (FWHM) of ~100 ps and an optical energy of >3 nJ but with some trailing oscillations were achieved in experiments employing injection current pulses in the nanosecond range with an amplitude of ≤17 A, generated using inexpensive silicon (Si) electronics. The performance was improved by introducing a saturable absorber (SA) into the laser cavity, which suppressed the formation of trailing oscillations, resulting in a single optical pulse. / Tiivistelmä ”Gain switching” (vahvistuskytkentä) on tunnettu tekniikka lyhyiden (<100 ps) optisten pulssien generoimiseen laserdiodeilla. Kaupallisia laserdiodirakenteita käyttäen optinen energia rajoittuu kuitenkin 10…100 pJ:n tasolle. Tällöinkin, erityisesti suurilla energiatasoilla, optisessa pulssissa ilmenee voimakkaita jälkioskillaatioita. Tässä väitöskirjassa tutkittiin ja kehitettiin kokeellisesti varmennettuja laserdiodilähetinrakenteita tavoitteena saavuttaa >1 nJ:n optisen pulssin energia ja ~100 ps:n pulssinpituus gain-switching -toimintamoodissa. Tavoitteena oli myös minimoida jälkipulssien energia. Tutkimuksen pääsisältönä on kaksi toimintaperiaatetta: Toisessa tekniikassa päähuomio kohdistuu laseridiodin virta-ajuriin, johon kehitettiin elektroniikka, joka kykenee tuottamaan nopeita virtapulsseja laajalla pulssivirta-alueella. Virtapulssin nopeuden kasvattamisen (<1 ns) osoitettiin edistävän gain switching -ilmiötä. Toisena tekniikkana tutkittiin räätälöityä laserdiodirakennetta, joka sisäisen toimintansa perusteella tuottaa dynaamisessa ohjaustilanteessa tehokkaan ja nopean laserpulssin. Kummankin periaatteen osoitettiin toimivan huonelämpötilassa (23±3°C) ilman erillistä jäähdytystä. Ensimmäisessä ratkaisussa käytettiin nopeaa gallium-arsenidi (GaAs) -avalanchetransistoria virtakytkimenä, jolla saavutettiin <1 ns FWHM injektiovirtapulssi 10 A:n virtatasolla. Tällainen virtapulssi on riittävän lyhyt virittämään ”gain switching” -ilmiön nJ-energiatasolla. Lupaavin rakenne toiseksi ratkaisuksi oli reunaemittoiva puolijohdelaseri, jossa epäsymmetrinen aaltoputki ja aktiivinen alue ovat sijoitettu normaalista laserdiodirakenteesta poiketen rinnakkain. Tällä rakenteella voitiin tuottaa ~100 ps levyisiä (FWHM) ja >3 nJ optisen kokonaisenergian omavia laserpulsseja edullisella pii-pohjaisella (Si) elektroniikalla luoduilla 1.5–2 ns:n (FWHM) ≤17 A injektiovirtapulsseilla. Suorituskykyä saatiin edelleen parannettua istuttamalla saturoiva absorbaattori (SA) laserin optiseen onteloon. Tämän osoitettiin vähentävän jälkioskillaatioiden muodostumista.
2

High-Precision, Mixed-Signal Mismatch Measurement of Metal-Oxide-Metal Capacitors and a 13-GHz 5-bit 360-Degree Phase Shifter

Bustamante, Danilo 05 August 2020 (has links)
A high-precision mixed-signal mismatch measurement technique for metal-oxide metal (MoM) capacitors as well as the design of a 13-GHz 5-bit 360-degree phase shifter are presented. This thesis presents a high-precision, mixed-signal mismatch measurement technique for metal-oxide–metal capacitors. The proposed technique incorporates a switched-capacitor op amp within the measurement circuit to significantly improve the measurement precision while relaxing the resolution requirement on the backend analog-to-digital converter (ADC). The proposed technique is also robust against multiple types of errors. A detailed analysis is presented to quantify the sensitivity improvement of the proposed technique over the conventional one. In addition, this thesis proposes a multiplexing technique to measure a large number of capacitors in a single chip and a new layout to improve matching. A prototype fabricated in 180 nm CMOS technology demonstrates the ability to sense capacitor mismatch standard deviation as low as 0.045% with excellent repeatability, all without the need of a high-resolution ADC. The 13-GHz 5-bit 360-degree phase shifter consists of 2 stages. The first stage utilizes a delay line for 4-bit 180-degree phase shift. A second stage provides 1-bit 180-degree phase shift. The phase shifter includes gain tuning so as to allow a gain variation of less than 1 dB. The design has been fabricated in 180 nm CMOS technology and measurement results show a complete 360◦ phase shift with an average step size of 10.7◦ at 13-GHz. After calibration the phase shifter presented an output gain S21 of 0.5 dB with a gain variation of less than 1 dB across all codes at 13-GHz. The remaining s-parameter testing showed a S22 and S11 below -11 dB and a S12 below -49 dB at 13 GHz.

Page generated in 0.092 seconds