• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FLUCTUATIONS QUANTIQUES DE LA SIGNATURE DE LA METRIQUE A L'ECHELLE DE PLANCK

BOGDANOFF, GRICHKA 26 June 1999 (has links) (PDF)
Nous proposons de montrer que la signature Lorentzienne de la métrique d'espace-temps (+++-) n'est plus fixe à l'échelle de Planck lp et présente des "oscillations quantiques" entre les formes Lorentzienne et Euclidienne (+++±) jusqu'à l'échelle 0 où elle prend la forme Euclidienne (+ + + +). 1- Au plan algébrique, nous suggérons l'existence d'un "chemin de fluctuation" (3, 1)-(4, 0) excluant la signature ultra-hyperbolique (2, 2). Nous construisons l'espace topologique quotient *top décrivant la superposition des métriques Lorentzienne et Riemannienne. Nous montrons que *top comporte un point singulier S correspondant à l'origine de l'espace de superposition. En termes de groupes quantiques, nous établissons le lien entre q-déformation et "déformation" de la signature, notre principal résultat étant la construction du nouveau produit bicroisé cocyclique Mc(H). Une telle construction nous a permis de réaliser l'unification des signatures Lorentzienne et Euclidienne au sein du produit bicroisé cocyclique entre le groupe quantique Lorentzien Uq(so(3, 1)) et le groupe quantique Euclidien Uq(so(4))op. Nous suggérons aussi que la "semidualisation" de Majid décrit la transition q-Euclidien Æ q-Lorentzien. De même, la q-déformation de l'espace-temps indique que les structures naturelles Rq(4) et Rq(3,1) , covariantes sous Uq(so(4)) et Uq(so(3, 1)) sont reliées par semidualité. 2- Au plan physique, dans le cadre de la supergravité N=2, nous considérons qu'à l'échelle de Planck, le (pré)espace-temps est en état KMS (Kubo-Martin-Schwinger), le paramètre d'échelle ß du système étant complexe. L'algèbre de von Neumann associée à l'état non trivial des mesures sur la métrique à l'échelle de Planck est un facteur sans trace, de type IIIl. Nous étendons alors à l'échelle de supergravité la gravité relativiste et adoptons le Lagrangien L-supergravité = R2 + ßR + RR* incluant des termes de courbure quadratiques en R2, avec une composante physique (le terme d'Einstein ) associée à la signature Lorentzienne et une composante topologique (le terme topologique ) associée à la signature Euclidienne. La limite infrarouge de la théorie de superposition est alors donnée, à l'échelle de Planck, par le terme en R (+++-) tandis que la limite ultraviolette est donnée, à ß = 0, par le terme topologique RR* (++++). Nous proposons une dualité nouvelle entre instantons (secteur topologique) et monopôles (secteur physique) en dimension 4 représentant la superposition des métriques. 3- Au plan cosmologique, nous décrivons la Singularité Initiale de l'espace-temps par l'invariant topologique Is = Tr(-1)S, analogue au premier invariant de Donaldson. La Singularité Initiale, dont nous proposons la solution dans le cadre de la théorie topologique des champs, est ici identifiée à un instanton gravitationel singulier de rayon r = 0. Les observables physiques sont alors remplacées, à l'échelle 0, par des cycles d'homologie dans l'espace des modules des instantons. Nous conjecturons l'existence d'une amplitude topologique associée à une phase "d'expansion topologique" du pré-espace-temps de l'échelle 0 à l'échelle de Planck, précédant la phase d'expansion conventionnelle. L'expansion topologique du pré-espace-temps à partir de l'échelle 0 devrait alors correspondre à une pseudo-dynamique en temps imaginaire, que nous décrivons par le semi-groupe à un paramètre des automorphismes de l'algèbre M0,1 des pseudo-observables du système, M0,1 est un facteur à trace de type II*, associé à l'état ergodique de la mesure au voisinage de la Singularité Initiale.
2

Matrices de Cartan, bases distinguées et systèmes de Toda / Cartan matrix, distinguished basis and Toda's systems

Brillon, Laura 27 June 2017 (has links)
Dans cette thèse, nous nous intéressons à plusieurs aspects des systèmes de racines des algèbres de Lie simples. Dans un premier temps, nous étudions les coordonnées des vecteurs propres des matrices de Cartan. Nous commençons par généraliser les travaux de physiciens qui ont montré que les masses des particules dans la théorie des champs de Toda affine sont égales aux coordonnées du vecteur propre de Perron -- Frobenius de la matrice de Cartan. Puis nous adoptons une approche différente, puisque nous utilisons des résultats de la théorie des singularités pour calculer les coordonnées des vecteurs propres de certains systèmes de racines. Dans un deuxième temps, en s'inspirant des idées de Givental, nous introduisons les matrices de Cartan q-déformées et étudions leur spectre et leurs vecteurs propres. Puis, nous proposons une q-déformation des équations de Toda et construisons des 1-solitons solutions en adaptant la méthode de Hirota, d'après les travaux de Hollowood. Enfin, notre intérêt se porte sur un ensemble de transformations agissant sur l'ensemble des bases ordonnées de racines comme le groupe de tresses. En particulier, nous étudions les bases distinguées, qui forment l'une des orbites de cette action, et des matrices que nous leur associons. / In this thesis, our goal is to study various aspects of root systems of simple Lie algebras. In the first part, we study the coordinates of the eigenvectors of the Cartan matrices. We start by generalizing the work of physicists who showed that the particle masses of the affine Toda field theory are equal to the coordinates of the Perron -- Frobenius eigenvector of the Cartan matrix. Then, we adopt another approach. Namely, using the ideas coming from the singularity theory, we compute the coordinates of the eigenvectors of some root systems. In the second part, inspired by Givental's ideas, we introduce q-deformations of Cartan matrices and we study their spectrum and their eigenvectors. Then, we propose a q-deformation of Toda's equations et compute 1-solitons solutions, using the Hirota's method and Hollowood's work. Finally, our interest is focused on a set of transformations which induce an action of the braid group on the set of ordered root basis. In particular, we study an orbit for this action, the set of distinguished basis and some associated matrices.

Page generated in 0.2148 seconds