• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude d'une classe d'estimateurs à noyau de la densité d'une loi de probabilité

Abdous, Belkacem 23 January 2019 (has links)
Dans ce travail nous donnons un aperçu des plus intéressantes approches visant à déterminer la fenêtre optimale en estimation de la densité d’une loi de probabilité par la méthode du noyau. Nous construisons ensuite une classe d’estimateurs à noyau de la densité pour lesquels nous avons établi des conditions suffisantes de convergence uniforme presque sûre et L¹ presque sûre vers la densité à estimer f [f incliné vers la droite]. Cette classe d’estimateurs à noyau étant assez générale, elle nous a permis d’appliquer ces résultats de convergence à des estimateurs à noyau classiques comme ceux de Deheuvels (1977-a), Shanmugam (1977), Bierens (1983), et Devroye et Wagner (1983). Elle nous a permis également, de construire une famille d’estimateurs à noyau de moyenne μn et de matrice de variance-covariance Vn, où fin est un estimateur non spécifié de la moyenne de / et Vn, à une constante multiplicative près, la matrice de variance-covariance empirique. Enfin, en simulant quelques modèles univariés connus, nous avons comparé les performances de l’estimateur à noyau de Parzen-Rosenblatt avec celles de l’estimateur à noyau de variance la variance empirique et de moyenne /xn, où a été choisi comme étant la moyenne empirique X n ou bien la médiane X n ou bien la moyenne empirique a-tronquée (a = 0.1) ou bien l’estimateur de Gastwirth (1966). / Québec Université Laval, Bibliothèque 2018

Page generated in 0.0191 seconds