• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes d'interpolation dans la résolution semi-lagrangienne par éléments finis, des équations de Saint-Venant

Djoumna, Georges 11 April 2018 (has links)
Lorsqu'on s'intéresse aux processus lents dans l'océan et dans l'atmosphère, il est important de calculer avec une grande précision les modes lents de Rossby. Dans cette thèse, la méthode semi-lagrangienne est combinée à la méthode des éléments finis pour simuler les ondes de Rossby lentes en modélisation océanographique. Ces ondes sont modélisées par les équations hyperboliques de Saint-Venant, étudié dans cette thèse, et obtenue à partir des équations de Navier Stokes. L'application de la méthode semi-lagrangienne conduit à un problème d'interpolation. Dans cette thèse, nous construisons des schémas d'interpolation d'ordre élevé pour traiter les opérateurs d'advection. Pour pouvoir obtenir de tels schémas, nous avons choisi de faire appel aux éléments finis de classe C1 . Nous nous limitons à l'élément fini de Bell et à la famille d'éléments finis de Hseih-Clough-Tocher, réduit et complet. Des tests numériques sont effectués pour l'équation d'advection linéaire bidimensionelle afin de mesurer le gain apporté par les interpolants C1 . Différentes approches sont proposées pour réinterpoler au pied d'une caractéristique. Une étude théorique de l'analyse de la stabilité et de la précision de ces approches est faite dans le cas de l'équation de transport unidimensionelle. Une comparaison des différentes méthodes de calcul au pied des caractéristiques est également faite à travers des essais numériques. Après avoir validé la construction des interpolants C1 et les différentes approches de remontée des caractéristiques sur des problèmes linéaires simples, nous nous attaquons aux cas non linéaires. Cette fois-ci les domaines de calcul sont complexes et réalistes, le golfe du Mexique en est une illustration. Nous avons choisi deux types d'éléments finis pour résoudre les équa tions de Saint-Venant non linéaires : les paires d'éléments finis P2 — -Pi1 et P1nc — P1. Des simulations numériques faites avec ces deux types d'approximation permettent de bien représenter les ondes de Rossby à un coût de calcul relativement faible et sans l'emploi de la viscosité artificielle.

Page generated in 0.0396 seconds