1 |
Solveur GCR pour les méthodes de type mortierPouliot, Benoît 24 April 2018 (has links)
Les méthodes de type mortier, introduites en 1987 par Bernardi, Maday et Patera, font partie de la grande famille des méthodes par décomposition de domaine. Combinées à la méthode des éléments finis, elles consistent à construire une discrétisation non conforme des espaces fonctionnels du ou des problèmes étudiés. Les trente dernières années de recherche portant sur ces méthodes ont permis d'acquérir des connaissances solides tant au point de vue théorique que pratique. Aujourd'hui, elles sont naturellement utilisées pour résoudre des problèmes d'une grande complexité. Comme applications, nous pouvons simplement penser à des problèmes de contact entre divers solides, à des problèmes d'interaction fluide-structure ou à des problèmes impliquant des mécanismes en mouvement tel des engrenages ou des alternateurs. Cette thèse de doctorat a pour objectif d'expliquer en détail la construction des méthodes de type mortier et de développer des algorithmes adaptés à la résolution des systèmes ainsi créés. Nous avons décidé d'employer l'algorithme du GCR (Generalized Conjugate Residual method) comme solveur de base pour nos calculs. Nous appliquons d'abord une factorisation du système linéaire global grâce à son écriture naturelle en sous-blocs. Cette factorisation génère un système utilisant un complément de Schur qu'il faut résoudre. C'est sur ce sous-système que nous employons l'algorithme du GCR. Le complément de Schur est préconditionné par une matrice masse redimensionnée, mais il est nécessaire de modifier l'algorithme du GCR pour obtenir des résultats théoriques intéressants. Nous montrons que la convergence de ce solveur modifié est indépendante du nombre de sous-domaines impliqués ainsi que de ses diverses composantes physiques. Nous montrons de plus que le solveur ne dépend que légèrement de la taille des éléments d'interface. Nous proposons une solution élégante dans le cas de sous-domaines dits flottants. Cette solution ne requiert pas la modification du solveur décrit plus haut. Des tests numériques ont été effectués pour montrer l'efficacité de la méthode du GCR modifiée dans divers cas. Par exemple, nous étudions des problèmes possédant plusieurs échelles au niveau de la discrétisation et des paramètres physiques. Nous montrons aussi que ce solveur a une accélération importante lorsqu'il est employé en parallèle. / The mortar methods, introduced in 1987 by Bernadi, Maday and Patera, are part of the large family of domain decomposition methods. Combined to the finite element method, they consist in constructing a nonconforming discretization of the functional space of the problem under consideration. The last thirty years of research about these methods has provided a solid knowledge from a theoretical and practical point of view. Today, they are naturally used to solve problems of great complexity such as contact problems between deformable solids, fluid-structure interaction problems or moving mechanisms problems like gears and alternators. The aim of this thesis is to explain in details the principles of mortar methods and to develop adapted algorithms to solve the generated linear systems. We use the GCR algorithm (Generalized Conjugate Residual method) as our basic solver in our computations. We first apply a factorization of the global linear system using the natural sub-block structure of the matrix. This factorization generates a system using a Schur complement. It is on this sub-system that we use the GCR algorithm. The Schur complement is preconditioned by a rescaled mass matrix, but it is necessary to slightly modify the GCR algorithm to obtain theorical results. We show that the convergence of this modified solver is independent of the number of subdomains involved and of the diverse physical parameters. We also show that the solver slightly depends on the size of the interface mesh. We present a strategy to take care of the so called floating subdomains. The proposed solution does not require any modification to the solver. Numerical tests have been performed to show the efficiency of the modified GCR method in various cases. We consider problems with several discretization and physical parameter scales. We finally show that the solver presents an important speedup in parallel implementation.
|
2 |
Le théorème spectral pour le problème de Steklov sur un domaine euclidienLabrie, Marc-Antoine 24 April 2018 (has links)
Le problème de Steklov est un problème spectral dont l'origine se situe en mécanique des fluides (oscillations de faibles amplitudes). En géométrie spectrale, on s'intéresse aux liens entre les fréquences de vibrations propres d'un espace et la géométrie de celui-ci. L'objet de ce mémoire consiste à donner une preuve succincte et accessible du théorème spectral pour le problème de Steklov qui stipule, entre autres, que le spectre de ce problème est discret. En effet, ce théorème est très important puisqu'il est le point de départ de toute étude du problème de Steklov en géométrie spectrale. Néanmoins, la preuve n'est pas facilement accessible dans la littérature et demande un travail bibliographique considérable.
|
3 |
Équations aux dérivées partielles et systèmes dynamiques appliqués à des problèmes issus de la physique et de la biologieBreden, Maxime 24 April 2018 (has links)
Cette thèse s’inscrit dans le vaste domaine des équations aux dérivées partielles et des systèmes dynamiques, et s’articule autour de deux sujets distincts. Le premier est relié à l’étude des équations de coagulation-fragmentation discrètes avec diffusion. En utilisant des lemmes de dualité, on établit de nouvelles estimations Lp pour des moments polynomiaux associés aux solutions, sous une hypothèse de convergence des coefficients de diffusion. Ces estimations sur les moments permettent ensuite d’obtenir de nouveaux résultats de régularité, et de démontrer qu’une fragmentation suffisamment forte peut empêcher la gelation dans le modèle incluant la diffusion. Le second sujet est celui des preuves assistées par ordinateur dans le domaine des systèmes dynamiques. On améliore et on applique une méthode basée sur le théorème du point fixe de Banach, permettant de valider a posteriori des solutions numériques. Plus précisément, on élargit le cadre d’application de cette méthode pour inclure des opérateurs avec un terme dominant linéaire tridiagonal, on perfectionne une technique permettant de calculer et de valider des variétés invariantes, et on introduit une nouvelle technique qui améliore de manière significative l’utilisation de l’interpolation polynomiale dans le cadre de ces méthodes de preuves assistées par ordinateur. Ensuite, on applique ces techniques pour démontrer l’existence d’ondes progressives pour l’équation du pont suspendu, et pour étudier les états stationnaires non homogènes d’un système de diffusion croisée. / This thesis falls within the broad framework of partial differential equations and dynamical systems, and focuses more specifically on two independent topics. The first one is the study of the discrete coagulation-fragmentation equations with diffusion. Using duality lemma we establish new Lp estimates for polynomial moments of the solutions, under an assumption of convergence of the diffusion coefficients. These moment estimates are then used to obtain new results of smoothness and to prove that strong enough fragmentation can prevent gelation even in the diffusive case. The second topic is the one of computer-assisted proofs for dynamical systems. We improve and apply a method enabling to a posteriori validate numerical solutions, which is based on Banach’s fixed point theorem. More precisely, we extend the range of applicability of the method to include operators with a dominant linear tridiagonal part, we improve an existing technique allowing to compute and validate invariant manifolds, and we introduce an new technique that significantly improves the usage of polynomial interpolation for a posteriori validation methods. Then, we apply those techniques to prove the existence of traveling waves for the suspended bridge equation, and to study inhomogeneous steady states of a cross-diffusion system.
|
4 |
Contributions à l'adaptation de maillage anisotrope sur base hiérarchiqueBriffard, Thomas 24 April 2018 (has links)
Cette thèse est la poursuite des travaux entrepris dans [13] pour le développement d’un nouvel estimateur d’erreur de type hiérarchique. Cet estimateur permet d’adapter un maillage et d’obtenir des solutions plus précises d’une équation aux dérivées partielles. La méthode est relativement générale et peut s’appliquer à une grande variété de problèmes, et permet théoriquement de traiter des approximations de n’importe quel degré. Elle mène, lorsque la solution le permet, à des maillages fortement anisotropes et se compare avantageusement aux méthodes basées sur la définition d’une métrique. Des améliorations substantielles à la méthode ont été apportées dans le cadre de ce travail. Les principaux objectifs étant de réduire fortement les coûts de calcul associés à la méthode et de la rendre beaucoup plus robuste de manière générale. Ainsi, on a revu et amélioré les algorithmes de reconstruction des gradients par un scaling approprié, de réinterpolation des champs en introduisant une méthode de krigeage. On a également introduit un algorithme de remaillage des coquilles à l’aide d’une méthode dite de «ear clipping» originale en 3D. L’algorithme de déplacement de sommets a également été revu. Enfin la gestion des frontières courbes est également considérée. De nombreux exemples bi et tridimensionnels sont présentés pour illustrer l’efficacité de l’estimateur. Des problèmes académiques sont d’abord considérés, y compris des problèmes singuliers où on montre que l’on obtient des taux de convergence optimaux (par rapport au nombre de degrés de liberté). Par la suite, on s’intéresse à différents domaines d’applications, notamment en mécanique des fluides et en neurosciences. Enfin, un algorithme général pour l’adaptation de maillage dans le cas instationnaire sera également décrit et testé. / This thesis is the continuation of the work undertaken in [13] for the development of a new a posteriori error estimator based on hierarchical basis. This estimator allows to adapt a finite element mesh and to obtain more accurate solutions of various partial differential equations. Most importantly, it leads, whenever possible, to strongly anisotropic meshes, and compares favorably with methods based on the definition of a metric. The method is fairly general and can be applied to approximations of any degree and to a wide variety of problems. In this work, several significant improvements have been added to the initial method. The objectives being to substantially reduce the calculation costs associated with the method and to make it much more robust. Many substantial contributions have been made to the various algorithms. Let’s mention the introduction of an appropriate scaling in the gradient recovery method, kriging for the reinterpolation of the different fields during adaptation, an original ear clipping method in 3D for local remeshing. A different approach for nodes displacement is also condirered. Finally we detailled how we take care of curved borders. Many bi and three-dimensional examples are presented to illustrate the efficiency of the estimator. Academic problems are first considered, including classical singular problems where optimal rates of convergence are observed (relative to the number of degrees of freedom). Applications in different fields such as fluid mechanics and neurosciences are then considered. Finally an algorithm for time-dependent problems is presented and tested.
|
5 |
Modélisation du transport d'eau et du changement de volume dans les neurones et les astrocytesLenkeu Lenkeu, Nadège Octavie 24 April 2018 (has links)
La microscopie holographique utilise des techniques d’interférométrie pour mesurer les changements de volume des neurones et des astrocytes avec une précision sans précédent. Un défi important serait de relier les changements de phase mesurés aux changements de volume du neurone et plus encore de relier l’étendue de ces changements de volumes à certaines propriétés des neurones comme le niveau d’activité des cotransporteurs cation-chlorure (CCC) et certaines propriétés biomécaniques des membranes. L’objectif à plus long terme est d’utiliser des changements de phase pour détecter des modifications dans la réponse volumique des neurones à un choc osmotique par exemple, modifications qui pourraient éventuellement permettre de détecter des pathologies. Pour comprendre l’information que l’on peut tirer des mesures expérimentales, il est important de comprendre le lien entre différentes variables : force de la pompe Na⁺ – K⁺ATPase, la perméabilité de la membrane à l’eau, les propriétés biomécaniques de la membrane et les changements de phase observés par l’expérimentateur. Pour y arriver, nous aborderons quelques notions sur les systèmes dynamiques, plus précisément nous utiliserons les Equations Différentielles Ordinaires (E.D.O.) afin d’éffectuer la modélisation mathématique du phénomène illustrant la variation du volume de la membrane cellulaire, ainsi que les variations des quantités de K⁺, Na⁺ et Cl⁻, qui constituent la principale composition ionique des astrocytes, qui sont les cellules étudiées dans ce projet. Dans ce même régistre de rappel mathématique sur les systèmes dynamiques, nous parlerons des bifurcations, pour lesquelles nous décrirons quand et comment est ce qu’elles apparaîssent tout en les illustrant par des exemples, ceci dans l’optique de se préparer à une meilleure compréhension des résultats à venir après l’étude de notre modèle, puisqu’on espère y observer des bifurcations. Nous serons ainsi amenés à étudier profondémént le système d’E.D.O obtenu, notamment la recherche des points d’équilibre et leurs comportements dans l’espace des phases, voir s’il ya lieu des points de bifurcation et leurs interprétations pour la cellule concernée. Le but visé étant d’obtenir des bifurcations, ce qui expliquerait le dysfonctionnement des astrocytes, et expliquerait certainement l’origine de certaines maladies maladies neurodégénératives ; nous verrons finalement après étude du modèle qu’il n’existe pas de bifurcation, néanmoins la simplicité du modèle utilisé ouvre des portes à de futurs projets plus complexes qui permettront peut-être d’atteindre les objectifs visés. / The holographic microscopy uses interferometry techniques for measuring changes in volume of neurons with an unprecedented accuracy. A major challenge is to relate the measured phase changes with the neuron volume changes and more to relate the extent of these changes volumes to certain properties of neurons such as the activity level of Cation-Chloride Cotransporter (CCC) and some biomechanical properties membranes. The longer term objective is the use of phase changes for detecting changes in the density response of neurons to an osmotic shock which could possibly allow the detection of many kind of pathologies. To understand the information that can be derived from experimental measurements, it is important to understand the relationship between different variables: force pump Na⁺ – K⁺ ATPase, membrane permeability of water, biomechanical properties of the membranes and the phase changes observed by the experimenter. To achieve this, we need some dynamical system skills, we will use the Ordinary Differential Equations (E.D.O) in order to perform the mathematical modeling of the phenomenon illustrating the variation of the membrane volume, as well as the variations in quantities of K⁺, Na⁺ and Cl⁻, which constitute the main ionic composition of astrocytes, which are the cells studied in this project. In this mathematical recall on dynamical systems, we will talk about the bifurcations for a better understanding of the incoming results since we are expecting bifurcations for our model. We will study deeply the E.D.O. system obtained including the search of equilibrium points and their behavior in the phase space, and we will see if there are bifurcations and what is their meaning. The aim being to obtain bifurcations, which would explain the dysfunction of the astrocytes, and would certainly explain the origin of certain neurodegenerative diseases; we will finally see, after studying the model, that there is no bifurcation, nevertheless the simplicity of the model used opens doors to more complex future projects that will perhaps achieve the desired objectives.
|
6 |
La copule khi-carré et son utilisation en statistique spatiale et pour la modélisation de données multidimensionnellesToupin, Marie-Hélène 24 April 2018 (has links)
Cette thèse étudie les propriétés des copules appartenant à la famille khi-carré. Il s’agit d’une généralisation des copules normales multidimensionnelles obtenue en élevant au carré les composantes d’un vecteur de variables aléatoires normales. Ces copules sont indicées par une matrice de corrélation et par un paramètre de forme. Cette thèse montre comment cette famille de copules peut être utilisée pour faire de l’interpolation spatiale et pour modéliser des données multidimensionnelles. Dans un premier temps, l’utilité de cette classe de structures de dépendance est démontrée par le biais d’une application en statistique spatiale. Un problème important dans ce contexte est de prévoir la valeur d’un champ aléatoire stationnaire en une position où il n’a pas été observé. Cette thèse montre comment construire de telles prévisions à l’aide de modèles spatiaux basés sur les copules. L’accent est mis sur l’utilisation de la famille des copules khi-carré dans ce contexte. Il faut d’abord supposer que la matrice de corrélation a une forme paramétrique standard, telle celle de Matérn, indicée par un paramètre inconnu associé à la force de l’association spatiale. Ce paramètre est d’abord estimé à l’aide d’une pseudo-vraisemblance composite construite à partir des lois bidimensionnelles des données observées. Ensuite, une méthode d’interpolation spatiale utilisant les rangs des observations est suggérée afin d’approximer la meilleure prévision du champ aléatoire à une position non observée. Dans un deuxième temps, les propriétés fondamentales des copules khi-carré sont étudiées en détail. Cette famille de copules permet une grande flexibilité quant à la modélisation de données multidimensionnelles. Dans le cas bivarié, ces copules s’adaptent à de la dépendance autant symétrique qu’asymétrique. En dimension plus grande, le paramètre de forme contrôle le degré d’asymétrie radiale des distributions marginales bidimensionnelles. Des procédures d’estimation de la matrice de corrélation et du paramètre de forme sont comparées dans le cas de répétitions indépendantes et identiquement distribuées. Enfin, des formules de l’espérance conditionnelle pour la meilleure prévision dans un contexte spatiale sont établies. Finalement, des tests d’adéquation basés sur des moments pour la famille des copules khi-carré sont développés. Ces nouveaux tests peuvent être appliqués à un ensemble de données de n’importe quelle dimension. Ces procédures reposent sur deux mesures d’association basées sur les rangs des observations ce qui évite d’avoir à spécifier les lois marginales. Il est démontré que le comportement conjoint de ces deux mesures est asymptotiquement normal. L’efficacité des nouvelles procédures d’adéquation est démontrée via une étude de simulations et est comparée à un test d’adéquation classique basé sur la copule empirique. / This thesis studies the properties of the family of chi-square copulas. This is a generalization of the multidimensional normal copulas obtained by squaring the components of normal random vector. These copulas are indexed by a correlation matrix and by a shape parameter. This thesis shows how this family can be used to perform spatial interpolation and to model multidimensional data. First, the usefulness of this class of dependence structures is demonstrated with an application in spatial statistics. An important problem in that context is to predict the value of a stationary random field at a position where it has not been observed. This thesis shows how to construct such predictions using spatial models based on copulas. One focusses on the use of the family of chi-square copulas in that context. One must first assumes that the correlation matrix has a standard parametric form, such as that of Matérn, indexed by an unknown parameter associated with the force of the spatial association. This parameter is first estimated using a composite pseudo-likelihood constructed from the bivariate distributions of the observed data. Then, a spatial interpolation method using the ranks of the observations is suggested to approximate the best prediction of the random field at an unobserved position under a chi-square copula. In a second work, the fundamental properties of the chi-square copulas are studied in detail. This family allows a lot of flexibility to model multidimensional data. In the bivariate case, this family is adapted to symmetric and asymmetric dependence structures. In larger dimensions, the shape parameter controls the degree of radial asymmetry of the two-dimensional marginal distributions. Parameter estimation procedures of the correlation matrix and of the shape parameter are compared under independent and identically distributed repetitions. Finally, the formulas of the conditional expectation for the best prediction in a spatial context are established. Goodness-of-fit tests for the family of chi-square copulas are then developed. These new tests can be applied to data in any dimension. These procedures are based on two association measures based on the ranks of the observations, which avoids having to specify the marginal distributions. It is shown that the joint behavior of these two measures is asymptotically normal. The efficiency of the new goodness-of-fit procedures is demonstrated through a simulation study and is compared to a classical goodness-of-fit test based on the empirical copula.
|
7 |
Génération de données synthétiques pour des variables continues : étude de différentes méthodes utilisant les copulesDesbois-Bédard, Laurence 24 April 2018 (has links)
L’intérêt des agences statistiques à permettre l’accès aux microdonnées d’enquête est grandissant. À cette fin, plusieurs méthodes permettant de publier les microdonnées tout en protégeant la confidentialité des répondants ont été proposées ; ce mémoire se penche sur l’une d’entre-elles : la génération de données synthétiques. Deux approches sont présentées, GADP et C-GADP, et une nouvelle est proposée. La méthode GADP suppose que les variables des données originales et synthétiques sont de loi normale, alors que la méthode C-GADP suppose qu’elles sont jointes par une copule normale. La nouvelle méthode est basée sur les modèles de copules en vigne. Ces modèles sont employés dans l’espoir de mieux modéliser les liens entre les variables. Les trois approches sont évaluées selon les concepts d’utilité et de risque. L’utilité de données confidentielles s’apprécie selon la similitude qu’elles ont avec les données originales et le risque, par la possibilité d’une violation de la confidentialité des répondants. Le risque peut survenir par identification ou par inférence. Seul le risque d’inférence est possible dans le cadre de ce mémoire. Précisément, l’utilité est évaluée avec quelques mesures faites à partir d’analyses spécifiques et une mesure globale basée sur les scores de propension calculés avec une régression logistique. Quant au risque, il est évalué avec une prévision basée sur la distance. / Statistical agencies face a growing demand for releasing microdata to the public. To this end, many techniques have been proposed for publishing microdata while providing confidentiality : synthetic data generation in particular. This thesis focuses on such technique by presenting two existing methods, GAPD and C-GADP, as well as suggesting one based on vine copula models. GADP assumes that the variables of original and synthetic data are normally distributed, while C-GADP assumes that they have a normal copula distribution. Vine copula models are proposed due to their flexibility. These three methods are then assessed according to utility and risk. Data utility depends on maintaining certain similarities between the original and confidential data, while risk can be observed in two types : reidentification and inference. This work will focus on the utility examined with different analysis-specific measures, a global measure based on propensity scores and the risk of inference evaluated with a distance-based prediction.
|
8 |
Modélisation de l'impact de la géométrie sur la signalisation électrique et calcique dans les épines dendritiques avec la méthode des éléments finisBoahen, Frank 24 April 2018 (has links)
La résolution des équations de Poisson-Nernst-Planck (PNP) dans les structures neurales gagne de la reconnaissance comme un outil important pour modéliser le champ électrique et l'évolution des concentrations ioniques dans les compartiments sous microscopiques. Cette approche a l'avantage de ne pas compter sur la simplification des hypothèses généralement faites dans le formalisme de la théorie du câble, comme la localisation du gradient électrique à la membrane ou l'homogénéité des concentrations ioniques dans les sous-domaines. Employant la méthode des éléments finis (FEM), nous appliquons les équations de PNP pour déchiffrer la relation, demeurée insaisissable jusqu'à maintenant, deinsaisissable entre la forme et la fonction des épines dendritiques. Nous montrons que la géométrie des épines (le volume de la tête des épines, la longueur et le rayon du cou des épines) est un déterminant important de la dynamique calcique dans l'épine dendritique, tout en ayant un impact limité sur le signal électrique.
|
Page generated in 0.0205 seconds