• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • Tagged with
  • 15
  • 15
  • 13
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fonction de la signalisation des Rho GTPases au cours du développement du cervelet / Function of Rho GTPase signaling during cerebellum development

Jaudon, Fanny 02 July 2012 (has links)
La cellule de Purkinje (PC) est l'élément central du réseau neuronal du cortex cérébelleux et possède un arbre dendritique très développé qui se développe au cours des trois premières semaines post-natales chez la souris. Cette arborisation nécessite de nombreux réarrangement du cytosquelette, un processus contrôlé par les GTPases et leurs régulateurs, les GEFs et les GAPs, dans de nombreux types cellulaires. Au cours de ma thèse, j'ai étudié l'implication de la signalisation des RhoGTPases dans le développement post-natal du cervelet, et plus particulièrement des PCs chez la souris. Afin d'identifier de nouveaux acteurs de la signalisation des RhoGTPases impliqués dans la différenciation des PCs, nous avons établi le profil d'expression de toutes les GTPases et des GEFs de la famille DOCK à différents stades de développement de ces cellules (P3, P7, P15, P20) par Q-PCR en temps réel. Cette approche globale nous a permis d'identifier une GTPase, RhoQ, et un GEF, DOCK10, dont l'expression est très fortement augmentée au cours du développement des PCs. Nous avons montré que l'extinction de leur expression par infection lentivirale dans un modèle de coupes organotypiques de cervelet ou dans des neurones d'hippocampe entraine une très forte diminution du nombre d'épines dendritiques, révélant un rôle crucial de ces protéines dans la différenciation des PCs. / Purkinje cell (PC) occupy a central and integrative position in the synaptic network of the cerebellum and have the most elaborate dendritic tree among CNS neurons, which develops remarkably in the first three postnatal weeks in mice. This arborization requires intensive actin cytoskeleton remodeling, a process known in many cell types to be controlled by Rho GTPases and their regulators, GEFs and GAPs. During my thesis, I investigated the importance of Rho signaling during postnatal mouse cerebellar development, focusing on PC differentiation.In order to identify novel regulators of PC differentiation among members of the Rho signaling pathway, I undertook a global approach, comparing gene expression profiles of all mammalian Rho GTPases and all GEFs of the DOCK family at various stages of postnatal PC differentiation (P3, P7, P15 and P20) using real-time quantitative PCR. My global approach has allowed the identification of two Rho signaling actors, the GTPase RhoQ and the RhoGEF DOCK10, whose expressions increase dramatically during cerebellar development. Lentiviral shRNA-mediated knock down of their expression in organotypic cerebellar cultures and in hippocampal neurons showed strong dendritic spine defects, revealing an essential role for these proteins in PC differentiation.
2

Etude de l’expression de l'homéoprotéine Engrailed dans l’hippocampe et de ses effets sur la complexité dendritique / Engrailed : hippocampal expression and role in dendritic complexity

Soltani, Asma 25 February 2014 (has links)
Engrailed (En) est un facteur de transcription important pour la mise en place de la segmentation de l’embryon et du plan d’organisation antéro-postérieur. Comme d’autres membres de la famille des homéoprotéines, Engrailed peut aussi agir comme une molécule de signalisation extracellulaire, internalisable grâce à son domaine « pénétratine » et stimulant dans la cellule cible la transcription ou la traduction des ARNm. De cette façon, Engrailed guide les axones en modifiant la traduction dans le cône de croissance axonal et l’infusion cérébrale d’Engrailed protège les neurones dopaminergiques dans un modèle de la maladie de Parkinson en augmentant la traduction de protéines mitochondriales. Des troubles cognitifs et un déficit des interactions sociales ont été observés chez les souris En1+/- et les souris En2-/-. Une augmentation de l’expression d’En2 a aussi été observée chez des patients atteints de troubles du spectre autistique. Néanmoins, le lien entre les modifications de l’expression d’Engrailed et l’autisme ne sont pas compris. L’objectif de cette thèse a été d’étendre notre connaissance des fonctions d’Engrailed dans une région télencéphalique où elle est a priori peu exprimée (l’hippocampe). Nos résultats confirment l’expression d’En1 et En2 dans l’hippocampe mature et décrivent les variations de l’expression de ces gènes au cours du développement de cette structure. En1 et En2 présentent des patrons d’expression différents pendant la première semaine postnatale et chez l’adulte suggérant que des variations du dosage génique d’Engrailed sont liées à certaines phases du développement, en particulier au début de la synaptogenèse. Nous avons également découvert que dans les cultures de cellules d’hippocampe Engrailed est exprimé dans les neurones et que son expression est plus forte dans les neurones GABA-ergiques, notamment dans leurs prolongements dendritiques et axonaux. Nous avons constaté qu’un excès d’Engrailed (décrit dans certains cas de TSA) augmente la complexité dendritique ainsi que la densité des épines dendritiques plastiques mais sans augmenter parallèlement la formation de synapses matures excitatrices. Nous avons observé des variations de densité des épines dendritiques chez les souris En2-/- et les souris En1+/-, ce qui confirme l’implication d’Engrailed dans leur formation ou leur stabilisation. Si dans nos conditions expérimentales l’excès d’Engrailed ne modifie pas la densité des synapses, un mutant d’Engrailed qui présente une interaction réduite avec eIF4E est moins efficace qu’Engrailed pour augmenter la densité des épines et diminue la densité des boutons présynaptiques et le synaptic matching. Ces résultats indiquent que l’interaction avec eIF4E régule au moins en partie les effets d’Engrailed sur la spinogenèse et suggèrent également une implication d’Engrailed dans la formation ou la stabilisation des boutons présynaptiques. Le rôle clef d’eIF4E dans la traduction permet de postuler que certains effets d’Engrailed observés dans notre étude pourraient dépendre de la synthèse protéique. Nos résultats montrent à cet égard qu’Engrailed augmente la synthèse protéique dans les neurones d’hippocampe. Cette traduction est différente de celle induite par la LTP chimique (LTPc) car insensible à l’action des oligomères synthétiques d’AβO, responsables sous leur forme naturelle de synaptopathies dans le contexte de la maladie d’Alzheimer. Engrailed permet également de restaurer la traduction défaillante de neurones issus de souris TG2576, modèles de la maladie d’Alzheimer. Dans leur ensemble, nos résultats identifient Engrailed comme un nouvel acteur de la plasticité dendritique. Ils révèlent qu’un excès d’Engrailed au cours de la synaptogenèse modifie les caractéristiques des dendrites, une situation susceptible d’altérer les caractéristiques fonctionnelles du réseau dendritique dans une situation de surexpression pathologique de la protéine. (...) / Engrailed (En) is an important transcription factor in embryo’s segmentation and anterior-posterior axis establishment during early embryogenesis. As several homeoproteins, Engrailed can act as an extracellular signalling molecule which can be internalized by target cells thanks to its penetratin domain and act through transcriptional and/or translation dependent mechanisms. Engrailed has for instance, translation-dependent effects on axonal guidance and cerebral infusion of Engrailed protects dopaminergic neurons in a Parkinson disease model by increasing mitochondrial protein translation. Also, cognitive defects were observed in En1+/+ and En2-/- and En2 expression is increased in ASD patients. This work consisted in extending the knowledge of Engrailed expression and functions. We explored the links with a telencephalic structure where it is a priori fewly expressed (hippocampus). Our results confirm En1 and En2 expression in the mature hippocampus and describe their respective expression along the development of this structure. En1 and En2 have different expression patterns during the first post-natal week as well as in the adulthood suggesting a genetic dosage of Engrailed during the development, specifically with the beginning of synaptogenesis. We also reveal that Engrailed, expressed in hippocampal neurons, is more expressed in GABA-ergic neurons, notably in their dendritic and axonal neurites. We observe that an excess of Engrailed (described in some ASD cases) increases dendritic complexity as well as plastic dendritic spine density, without affecting mature excitatory synapses. We show that En2-/- and heterozygote En1 mice have variations in dendritic spine density, which confirms that Engrailed is involved either in their formation or stabilization. Even though our experiments show no modification of synapse density with an excess of Engrailed, a mutant showing a decreased eIF4E interaction and less efficient than wild type Engrailed to increase dendritic spine density, decreases presynaptic button density and synaptic matching. Those results indicate that eIF4E interaction with Engrailed is, at least in part, responsible for its effects on spinogenesis and suggest a role of Engrailed in presynaptic button formation/stabilization. Key-role of eIF4E in translation allow to hypothesize that some of Engrailed effects we report could be translation dependent. In this sense, our results show that Engrailed is able to increase proteic synthesis in hippocampal neurons. This translation is different from the one induced by chemical LTP (LTPc): it is not altered by synthetic AβO, which are the main toxic agent when produced at abnormally high levels in Alzheimer disease. Engrailed is also able to restore defaulting translation in neurons from Alzheimer disease mice model (TG2576). As a whole, our results identify Engrailed as a novel actor in dendritic plasticity. They reveal that an excess of Engrailed during synaptogenesis can modify dendrite characteristics. This can lead to dendritic network dysfunction in a context of pathologic surexpression of Engrailed. Our observations open to new perspectives contributing to a better understanding of the relationship between Engrailed and ASD. Finally, this work lays the foundation to potentially fruitful links between Engrailed and AβOligomers signalling pathways, where modulation of protein synthesis could be a therapeutic lever in physiopathologic conditions.
3

Dynamique et mécanismes moléculaires de la plasticité structurale des neurones du noyau Accumbens en réponse à la cocaïne / Dynamics and molecular mechanisms of the cocaine-induced structural plasticity of nucleus Accumbens neurons

Dos Santos, Marc 04 October 2016 (has links)
Les événements vécus peuvent laisser une trace durable au niveau des réseaux cérébraux. Ces réseaux sont constitués de neurones connectés par des synapses, dont l'efficacité de transmission est régulée sur le plan fonctionnel et structural. Les drogues d'abus détournent les circuits neuronaux impliqués dans l'apprentissage régulé par la récompense, induisant une plasticité des neurones striataux de projection (SPN) du noyau Accumbens (NAc), notamment via l'activation de la voie de signalisation Extracellular Regulated Kinase (ERK) et l'augmentation de la densité en épines dendritiques -qui sont les protrusions portant l'élément post-synaptique glutamatergique-. L'objectif de ma thèse était d'étudier l'impact de l'exposition répétée ou unique à la cocaïne sur le mode formation des synapses des SPN du NAc et d'élucider les rôles précis de la voie ERK dans ce phénomène. J'ai pu montrer qu'une ou plusieurs injections de cocaïne chez la souris induisaient la formation de synapses glutamatergiques persistantes au sein des SPN in vivo. Par des expériences d'imagerie en temps-réel sur tranches striatales, j'ai dissocié les phases de pousse et de stabilisation de nouvelles épines dendritiques. J'ai pu mettre en évidence que la voie ERK joue un rôle prépondérant dans ces deux phases via des processus moléculaires distincts. Ainsi, la phase de pousse des épines est directement régulée par ERK, tandis que le maintien est régulé par MNK-1, une kinase cytoplasmique en aval de ERK, et par la synthèse protéique. Ce travail apporte des données nouvelles sur le mode de formation de ces synapses et les mécanismes moléculaires associés. / Brief life occurrences can leave durable changes at the level of neuronal networks. These networks consist of neurons connected by synapses, which transmission efficacy is regulated at the functional and structural levels. Drugs of abuse highjack neuronal circuits involved in reward-driven learning by activating the Extracellular Regulated Kinase (ERK) pathway and induce an increase in the dendritic spines density –protrusions which host the glutamatergic pre-synaptic element- of SPN. The goal of my thesis work was to study the consequences of acute and chronic cocaine exposures on the mode of synapse formation in SPN from the NAc and to decipher the precise roles of ERK pathway in this phenomenon. I demonstrated that acute and chronic cocaine treatments induced the formation of persisting glutamatergic synapses in SPN in vivo. Time-lapse imaging using two-photon microscopy in acute striatal slices allowed me to dissociate the phases of growth and stabilization of the new dendritic spines. I could indeed demonstrate a key role for ERK in those two phases, although through distinct molecular mechanisms. Firstly, the growth phase is dependent on ERK. Secondly, the stabilization of newly grown spines is controlled by MNK-1, a cytosolic kinase downstream ERK, and by protein synthesis. This work brings new results on the mode of synapse formation as well as on the associated molecular mechanisms.
4

Analysis and application of Poisson-Nernst Planck equations in neural structures

Boahen, Frank 02 June 2023 (has links)
Titre de l'écran-titre (visionné le 22 mai 2023) / Les modèles mathématiques sont souvent employés en neurosciences pour mieux comprendre le comportement des neurones et des réseaux neuronaux. De nombreux outils mathématiques sont utilisés pour décrire les différents aspects de l'activité et des structures neuronales sur des échelles temporelles et temporelles s'étendant sur plusieurs ordres de grandeur. Par exemple, les systèmes d'équations différentielles ordinaires tels que le modèle de Hodgkin-Huxley sont utilisés depuis plusieurs décennies pour décrire les mécanismes de génération de potentiels d'action dans les neurones. À une échelle spatiale plus grande, les équations aux dérivées partielles (EDP) telles que les équations de Maxwell sont utilisées pour comprendre la distribution du champ électrique sur l'ensemble du cerveau. Un nombre moins important de recherches ont été consacrées à l'étude de la distribution des concentrations ioniques et du champ électrique dans les petites structures neuronales (∼ 1μm) telles que les nœuds de Ranvier, les épines dendritiques ou les vésicules présynaptiques. Une manière de modéliser ces structures est de résoudre le système EDP des équations de Poisson Nernst Planck. Ce système d'équations peut être utilisé pour calculer la distribution des concentrations ioniques en résolvant les équations de Nernst-Planck et résoudre la distribution des champs électriques par l'équation de Poisson. L'avantage d'une telle approche est qu'elle permet d'étudier des structures aux géométries arbitrairement complexes. L'objectif principal de cette thèse est d'utiliser le système d'équations de Poisson Nernst-Planck pour modéliser l'activité des épines dendritiques et des nœuds de Ranvier afin de mieux comprendre les les fluctuations des concentrations ioniques dans ces structures. Une contribution importante du projet projet est l'implémentation d'une méthode numériquement efficace pour résoudre ces équations. En effet, la résolution de l'EDP sur des géométries non triviales peut rapidement devenir coûteuse en termes de calcul ce qui rend important le choix d'une approche numérique efficace. Nous avons utilisé la méthode des éléments finis avec des éléments de second ordre. Notre code est implémenté sur le logiciel MEF++, un code développé par le groupe de recherche GIREF de l'Université Laval. Les deux structures d'intérêt, les épines dendritiques et les nœuds de Ranvier, ont été choisies parce qu'elles jouent des rôles importants dans la signalisation neuronale et parce que leurs fonctions sont susceptibles d'être modulées par des altérations de leurs géométries. Les épines dendritiques sont des structures en forme de champignon qui recouvrent les branches dendritiques. Une grande partie des synapses excitatrices sont situées sur les épines dendritiques et l'on pense donc que ces structures jouent un rôle dans la façon dont le signal électrique est transmis au corps cellulaire du neurone. Nous avons simulé des événements synaptiques se produisant sur des épines de géométries différentes afin de déchiffrer la relation entre leur forme et leur fonction. Les événements survenant au niveau des synapses excitatrices déclenchent deux types de réponses, une dépolarisation électrique et une augmentation de la concentration en calcium. Notre modèle décrit ces deux réponses. Nos simulations suggèrent que la forme des épines dendritiques est un déterminant important de la dynamique du calcium alors que son impact sur la signalisation électrique reste limité sur une large gamme de géométries. Les axones sont des structures filiformes qui transmettent des signaux électriques d'un neurone à d'autres. Les axones sont isolés électriquement par des gaines de myéline qui accélèrent la propagation des signaux. Les nœuds de Ranvier sont de petites sections non myélinisées de l'axone, espacées à des intervalles à peu près réguliers. Ces structures sont caractérisées par une forte densité de canaux commandés par le voltage qui maintiennent l'amplitude du potentiel d'action pendant sa propagation. Nous étudions numériquement l'effet de la longueur du nœud, de l'épaisseur de la myéline et de l'angle que fait la myéline avec le nœud de Ranvier sur la propagation du potentiel électrique dans la membrane de l'axone. Nous montrons que la perte de myéline dans le nœud de Ranvier pourrait avoir un impact important sur les potentiels extracellulaires. La méthodologie développée dans cette thèse pourrait être appliquée à de nombreuses autres structures telles que la fente synaptique ou les vésicules présynaptiques. / Mathematical models are often employed in neuroscience to better understand the behaviour of neurons and neural networks. Many mathematical tools are used to describe the different aspects of neural activity and structures over temporal and time scales spanning over several order of magnitudes. For example, systems of ordinary differential equations (ODE's) such as the Hodgkin-Huxley model have been used for several decades to describe the spike generating mechanisms in neurons. On a larger spatial scale, partial differential equations (PDE's) such as Maxwell equations are used to understand the distribution of the electrical field over the whole brain. A lesser amount of research has been devoted to the investigation of the distribution of ionic concentrations and electrical field in small neural structures (∼ 1 μm) such as nodes of Ranvier, dendritic spines or presynaptic vesicles. One way to perform such investigations is to solve the PDE system of Poisson Nernst Planck equations. This system of equations can be used to compute the distribution of ionic concentrations by solving the Nernst-Planck equations and resolve the distribution of electric fields through the Poisson equation. The advantage of such an approach is that it allows the investigation of structures with arbitrarily complex geometries. The main aim of this thesis is to use the Poisson Nernst-Planck system of equations to model the electrical activity of dendritic spines and nodes of Ranvier and to better understand the fluctuations of ionic concentrations in these structures. A significant contribution of the project is the implementation of a numerically efficient way to solve these equations. Indeed, the resolution of PDE on non trivial geometries can rapidly become computationally expensive making the choice of an efficient numerical approach important. We used the finite element method with second order elements. Our code is implemented on the MEF++ software, a code developed by the GIREF research group at Laval University. The two structures of interest, dendritic spines and nodes of Ranvier were chosen because they play important roles in signaling in neural signaling and because their functions is likely to be modulated by alterations in their geometries. Dendritic spines are mushroom like structures covering dendritic branches. A large proportion of excitatory synapses are located on dendritic spines and it is thus believed that these structures play a role in how the electric signal is transmitted to the neuron's cell body. We simulated synaptic events occurring on spines with many different geometries to decipher the elusive relationship between their shape and function. Events at excitatory synapses trigger two types of responses: an electrical depolarization and an increase in calcium concentration. Our model describes these two responses. Our simulations suggest that the shape of the spine is an important determinant of calcium dynamics while its impact on electric signaling remains limited over a wide range of geometries. Axons are wire like structures transmitting electric signals from one neuron to others. Axons are electrically insulated by myelin sheaths which accelerates signal propagation. Nodes of Ranvier are small unmyelinated sections of the axon spaced at roughly regular intervals. Theses structures are characterized by a high density of voltage gated channels which maintain the amplitude of the action potential during its propagation. Numerically, we investigate the effect of the node length, myelin thickness and the angle which the myelin makes with the node of Ranvier on the propagation of electric potential in the membrane of the axon. We show that loss of myelin in the node of Ranvier might have an important impact on extracellular potentials. The methodology developed in this thesis could be applied to many other structures such as the synaptic cleft or presynaptic vesicles.
5

Rôle de Scribble1 dans la formation des synapses glutamatergiques et le trafic des récepteurs NMDA / Role of Scribble1 in glutamatergic synapse formation and trafficking of NMDA receptors

Piguel, Nicolas 20 December 2010 (has links)
Les neurones établissent entre eux de nombreux contacts synaptiques, et l'on estime qu’en moyenne un neurone peut avoir dix mille contacts avec les neurones de son voisinage. L'une des synapses les plus importantes et les plus étudiées, dont les dysfonctionnements conduisent à des pathologies du cerveau, est la synapse excitatrice glutamatergique. Dans l’hippocampe, les synapses excitatrices présentent une structure postsynaptique particulière, sous la forme d’un renflement de la dendrite appelé épine dendritique. Cette épine possède un domaine particulier, la densité postsynaptique, concentrant de nombreux récepteurs aux glutamates, des protéines d’adhésion ainsi que des protéines d’échafaudage faisant le lien avec les cascades moléculaires intracellulaires et le cytosquelette d’actine. La morphologie de l’épine dendritique ainsi que le nombre de récepteurs présents dans la PSD sont des éléments clés dans la transmission synaptique et les phénomènes de potentiation et de dépression à long terme (LTP & LTD). Lors de ma thèse, j’ai identifié Scribble1 comme une nouvelle protéine régulant le trafic des récepteurs NMDA. Scribble1 est surtout connue pour son implication dans des processus de polarité, division et migration cellulaire. En modulant le taux de Scribble1, j’ai montré que je pouvais affecter le nombre et la morphologie des épines des neurones hippocampaux, ainsi que la polymérisation de l’actine. Ensuite, j’ai démontré que Scribble1 interagissait directement avec les récepteurs NMDA et permettait leur recyclage à la membrane. Enfin, chez le neurone immature, Scribble1 est impliqué dans la migration du cône axonal. Chez un animal mutant, qui n’exprime que 50% de la protéine (circletail) les performances mnésiques et sociales de l’animal sont perturbées, validant le rôle de la protéine au niveau du système nerveux. / One of the most studied and more important synapse is the glutamatergic excitatory synapse, which dysfunctions lead to brain pathologies. In the hippocampus, the most represented synapses are glutamatergic synapses using glutamate as neurotransmitter. Postsynaptic structures, such as dendritic spines, concentrate many glutamate receptors, adhesion proteins and scaffold proteins bridging receptors to molecular cascades and intracellular actin cytoskeleton. The morphology of the dendritic spine and the number of glutamate receptors at the surface of the spine are key-elements in synaptic transmission, such as of long-term potentiation (LTP). In this study, I identify Scribble1 as an important regulator of NMDA receptors trafficking. Scribble1 is well known for its roles in cell polarity, division and migration processes. First, I show that Scribble1 gain- and loss-of-function affect the number and morphology of spines, as well as the actin polymerization. Next, I showed that Scribble1 interacts directly with the NMDA receptor and stimulates its recycling to the membrane. Finally, in immature neuron, Scribble1 is involved in axon growth cone migration. In a Scribble1 mutant animal model, circletail, we observed disruption of synaptic transmission and memory and social performance defects, compatible with a role of the protein in central nervous system function.
6

The role of synaptopodin for the diffusion of membrane protein in the dendritic spine neck / Le rôle de synaptopodine dans la diffusion des protéines membranaires dans la tige des épines dendritiques

Wang, Lili 14 September 2015 (has links)
Au sein des synapses comme dans les régions extra synaptiques, la diffusion latérale joue un rôle critique dans la densité membranaire des récepteurs. En face des zones actives, l’accumulation de récepteurs détermine en particulier l’efficacité de la transmission synaptique. Il est important de comprendre les paramètres cellulaires qui jouent sur l’accès au compartiment synaptique, qu’ils soient d’origine moléculaires ou morphologiques. Dans les synapses excitatrices, la tige de l’épine dendritique se comporte comme une barrière à la diffusion. Cette barrière pourrait être fonction de la longueur et du diamètre de la tige (paramètre géométrique), ou résider dans la présence d’éléments spécifiques constituant des obstacles à la diffusion. Une sous-population d’épines contient dans sa tige une forme spécialisée de réticulum endoplasmique, appelé appareil épineux et constituée d’un empilement des accules de réticulum. Une protéine liant l’actine, nommée synaptopodine, est associée de façon étroite à l’appareil épineux et participe aux mécanismes de plasticité synaptique. La question centrale de ce travail de thèse était de définir si la présence de synaptopodine influait sur les caractéristiques de la diffusion dans la tige de l’épine, et d’identifier les mécanismes sous-jacents. Afin d’étudier la diffusion membranaire, j’ai utilisé trois protéines recombinantes différentes: une protéine associée au feuillet extérieur de la membrane plasmique (GFP-GPI), une protéine avec un domaine transmembranaire et une courte séquence intracellulaire (TMD-pHluorin), et la sous-unitéGluR5 du récepteur métabotropique (mGluR5) contenant 7 domaines transmembranaires et une séquence intracellulaire volumineuse. Les trois constructions portent une étiquette (GFP ou pHluorin) du côté extracellulaire. Les propriétés diffusives de ces molécules ont été mesurées par un suivi de particules uniques, à base de quantum dots. Ces expériences ont révélé que la diffusion des protéines membranaires est fonction du diamètre de la structure cylindrique considérée, et par conséquent moins rapide dans la tige de l’épine que dans le tronc du dendrite. Mais les propritétés diffusives dépendent aussi de la taille et delà complexité des molécules membranaires considérées. En effet, la diffusion de molécules comportant des domaines transmembranaires est particulièrement faible dans les tiges contenant de la synaptopodine. Cet aspect a été approfondi par l’utilisation de traitements pharmacologiques, qui ont permis de modifier la structure interne de la tige dendritique. Les variations des tailles des domainesoccupés par l’actine-F, et par lesaggrégats de synaptopodine, ont été observées à l’échelle nanoscopique en utilisant l’imagerie PALM/STORM. En conditions contrôle, la synaptopodine occupe la partie centrale de la tige. La dépolymérisation indirecte de l’actine-F par le 4-Aminopyridineentraîne une diminution des zones occupées par ces deux composants, corrélée à une augmentation de la vitesse de diffusion de mGluR5. En revanche, la dépolymérisation par la latrunculin-A (effet direct sur l’actine) induit une augmentation de la taille des clusters de synaptopodine et donc de la surface occupée par ceux-ci dans la tige. Les mesures de la diffusion de la sous-unité mGluR5 réalisées dans ces conditions montrent une accélération de la vitesse de diffusion, indiquant que la mobilité de mGluR5 n’est pas régulée par une interaction directe avec la synaptopodine. En conclusion, je propose un rôle de stabilisation mutuel pourl’actine-F et la synaptopodinedans la tige des épines dendritiques de neurones d’hippocampe en culture. Les épines contenant de la synaptopodine dans leur tige auraient une organisation unique du cytosquelette qui agirait comme une barrière additionnelle pour la diffusion de récepteurs aux neurotransmetteurs. / Lateral diffusion in and outside synapses plays a key role in the accumulation of receptors at synapses, which critically determines the efficacy of synaptic neurotransmission. Therefore, to better understand the trapping of neurotransmitter receptors in synapses, it is important to investigate the mechanisms that may affect receptors diffusion and their capacity to reach synapses. The neck of dendritic spine imposes a diffusional barrier that is considered to depend on the length and diameter of the spine neck. The origin of this barrier could be purely geometrical or could be induced by the presence of specific barriers/obstacles for diffusion. A subpopulation of spines contains a specialized form of endoplasmic reticulum in the spine neck called spine apparatus. The actin-binding protein synaptopodin (SP) is tightly associated with the spine apparatus and participates in synaptic plasticity mechanisms. The central question of my research was to assess whether the presence of the SP affects the diffusion of receptors in the spine neck and to characterize the underlying molecular mechanisms. To study membrane diffusion, I have developed three different probes: a construct associated with the outer leaflet of the plasma membrane (GFP-GPI), a construct with one transmembrane domain and a short intracellular sequence (TMD-pHluorin), and a recombinant metabotropic mGluR5 receptor construct containing an extracellular domain tagged with pHluorin, seven transmembrane domains, as well as a large intracellular region. The diffusion properties of these molecules were measured by single particle tracking using quantum dots. My experiments revealed that the diffusion of membrane proteins was slower in the spine neck than in the dendrite as a result of the different diameter of the two compartments. Furthermore, the diffusion properties depended on the molecular size and complexity of the membrane proteins. Interestingly, the diffusion of membrane proteins with transmembrane domains was particular slow in spine necks containing SP. This could be the result of direct molecular interactions between the membrane proteins and SP or due to spatial constraints that are related to the structural organization of spine necks expressing SP. To address these questions further I used pharmacological treatments to change the internal organization of the spine neck, and measured their effect on the diffusion properties of mGluR5. The distribution of SP and F-actin in the spine neck was determined on the nanoscopic scale using PALM/STORM imaging. This showed that under control condition SP occupies only the central region of the spine neck. Activity-dependent depolymerization of F-actin by 4-Aminopyridine led to a simultaneous decrease of the amount of F-actin and SP and enhanced the diffusion of mGluR5 in all analyzed neck regions. Disruption of F-actin by latrunculin A induced the re-distribution of SP and the formation of larger SP clusters, occupying an increased region within the spine neck. The recruitment of SP was accompanied by an acceleration of mGluR5 diffusion in SP-positive spines, demonstrating that the mobility of mGluR5 is not controlled by direct interactions with SP. Instead, the diffusion of mGluR5 is dependent on the organization of the spine cytoskeleton. In conclusion, I propose that SP and the polymerization of actin filaments have a reciprocal effect on the stability of each other in the spine neck of cultured hippocampal neurons. Spine necks bearing SP have a unique F-actin cytoskeletal organization that acts as an additional diffusion barrier for neurotransmitter receptors such as mGluR5.
7

Modélisation de l'impact de la géométrie sur la signalisation électrique et calcique dans les épines dendritiques avec la méthode des éléments finis

Boahen, Frank 24 April 2018 (has links)
La résolution des équations de Poisson-Nernst-Planck (PNP) dans les structures neurales gagne de la reconnaissance comme un outil important pour modéliser le champ électrique et l'évolution des concentrations ioniques dans les compartiments sous microscopiques. Cette approche a l'avantage de ne pas compter sur la simplification des hypothèses généralement faites dans le formalisme de la théorie du câble, comme la localisation du gradient électrique à la membrane ou l'homogénéité des concentrations ioniques dans les sous-domaines. Employant la méthode des éléments finis (FEM), nous appliquons les équations de PNP pour déchiffrer la relation, demeurée insaisissable jusqu'à maintenant, deinsaisissable entre la forme et la fonction des épines dendritiques. Nous montrons que la géométrie des épines (le volume de la tête des épines, la longueur et le rayon du cou des épines) est un déterminant important de la dynamique calcique dans l'épine dendritique, tout en ayant un impact limité sur le signal électrique.
8

Rôles des protéines Staufen 1 et 2 dans la plasticité synaptique des cellules pyramidales hippocampiques

Lebeau, Geneviève 01 1900 (has links)
La mémoire et l’apprentissage sont des phénomènes complexes qui demeurent encore incertains quant aux origines cellulaire et moléculaire. Il est maintenant connu que des changements au niveau des synapses, comme la plasticité synaptique, pourraient déterminer la base cellulaire de la formation de la mémoire. Alors que la potentialisation à long-terme (LTP) représente un renforcement de l’efficacité de transmission synaptique, la dépression à long-terme (LTD) constitue une diminution de l’efficacité des connexions synaptiques. Des études ont mis à jour certains mécanismes qui participent à ce phénomène de plasticité synaptique, notamment, les mécanismes d’induction et d’expression, ainsi que les changements morphologiques des épines dendritiques. La grande majorité des synapses excitatrices glutamatergiques se situe au niveau des épines dendritiques et la présence de la machinerie traductionnelle près de ces protubérances suggère fortement l’existence d’une traduction locale d’ARNm. Ces ARNm seraient d’ailleurs acheminés dans les dendrites par des protéines pouvant lier les ARNm et assurer leur transport jusqu’aux synapses activées. Le rôle des protéines Staufen (Stau1 et Stau2) dans le transport, la localisation et dans la régulation de la traduction de certains ARNm est bien établi. Toutefois, leur rôle précis dans la plasticité synaptique demeure encore inconnu. Ainsi, cette thèse de doctorat évalue l’importance des protéines Staufen pour le transport et la régulation d’ARNm dans la plasticité synaptique. Nous avons identifié des fonctions spécifiques à chaque isoforme; Stau1 et Stau2 étant respectivement impliquées dans la late-LTP et la LTD dépendante des récepteurs mGluR. Cette spécificité s’applique également au rôle que chaque isoforme joue dans la morphogenèse des épines dendritiques, puisque Stau1 semble nécessaire au maintien des épines dendritiques matures, alors que Stau2 serait davantage impliquée dans le développement des épines. D’autre part, nos travaux ont permis de déterminer que la morphogenèse des épines dendritiques dépendante de Stau1 était régulée par une plasticité synaptique endogène dépendante des récepteurs NMDA. Finalement, nous avons précisé les mécanismes de régulation de l’ARNm de la Map1b par Stau2 et démontré l’importance de Stau2 pour la production et l’assemblage des granules contenant les transcrits de la Map1b nécessaires pour la LTD dépendante des mGluR. Les travaux de cette thèse démontrent les rôles spécifiques des protéines Stau1 et Stau2 dans la régulation de la plasticité synaptique par les protéines Stau1 et Stau2. Nos travaux ont permis d’approfondir les connaissances actuelles sur les mécanismes de régulation des ARNm par les protéines Staufen dans la plasticité synaptique. MOTS-CLÉS EN FRANÇAIS: Staufen, hippocampe, plasticité synaptique, granules d’ARN, traduction, épines dendritiques. / Learning and memory are complex processes that are not completly understood at the cellular and molecular levels. It is however accepted that persistent modifications of synaptic connections, like synaptic plasticity, could be responsible for the encoding of new memories. Whereas long-term potentiation (LTP) is classically defined as a persistent and stable enhancement of synaptic connections, long-term depression (LTD) is a reduction in the efficacy of neuronal synapses. Numerous studies have identified some of the mechanisms of this phenomenon, in particular, the induction and expression mechanisms, as well as the changes in dendritic spine morphology. The most abundant type of synapse in the hippocampus is the excitatory glutamatergic synapse made on dendritic spines; the presence of the translational machinery in dendrites near spines strongly supports the concept of local mRNA translation. Moreover, those mRNA are transported in dendrites to activated synapses by RNA binding-proteins (RBP). Staufen proteins (Stau1 and Stau2) function in transport, localization and translational regulation of mRNA are now established. However, their precise roles in synaptic plasticity are still unknown. Thus, this Ph.D. thesis evaluates the importance of Staufen proteins in mRNA transport and regulation in synaptic plasticity. We have identified specific functions for each isoform; while Stau1 is implicated in late-LTP, Stau2 is required for mGluR-LTD. This specificity is also relevant for dendritic spine morphogenesis since Stau1 is involved in mature dendritic spine maintenance while Stau2 participates in dendritic spine morphogenesis at a developmental stage. Moreover, our studies have indicated that Stau1 involvement in spine morphogenesis is dependent on ongoing NMDA receptor-mediated plasticity. Finally, our results suggest that Stau2 is implicated in a particular form of synaptic plasticity through transport and regulation of specific mRNA granules required for mGluR-LTD such as Map1b. Our work uncovers specific roles of Stau1 and Stau2 in regulation of synaptic plasticity. These studies help to better understand mechanisms involving mRNA regulation by Staufen in long-term synaptic plasticity and memory. ENGLISH KEY WORDS: Staufen, hippocampus, synaptic plasticity, RNA granules, translation, dendritic spines
9

Caractérisation des complexes ribonucléoprotéiques de Staufen1 et Staufen2

Maher Laporte, Marjolaine 11 1900 (has links)
Dans la cellule, chaque ARNm se doit d’être régulé finement au niveau transcriptionnel, bien entendu, mais également au niveau de sa traduction, de sa dégradation ainsi que de sa localisation intracellulaire, et ce, afin de permettre l’expression de chaque produit protéique au moment et à l’endroit précis où son action est requise. Lorsqu’un mécanisme physiologique est mis de l’avant dans la cellule, il arrive souvent que plusieurs ARNm se doivent d’être régulés simultanément. L’un des moyens permettant d’orchestrer un tel processus est de réguler l’action d’une protéine commune associée à chacun de ces ARNm, via un mécanisme post-traductionnel par exemple. Ainsi l’expression d’un groupe précis d’ARNm peut être régulée finement dans le temps et dans l’espace selon les facteurs protéiques auxquels il est associé. Dans l’optique d’étudier certains de ces complexes ribonucléoprotéiques (mRNP), nous nous sommes intéressés aux isoformes et paralogues de Staufen, une protéine à domaine de liaison à l’ARN double-brin (dsRBD) impliquée dans de nombreux aspects de la régulation post-transcriptionnelle, tels la dégradation, la traduction ou encore la localisation d’ARNm. Chez la drosophile, un seul gène Staufen est exprimé alors que chez les mammifères, il existe deux paralogues de la protéine, soit Stau1 et Stau2, tous deux possédant divers isoformes produits suite à l’épissage alternatif de leur gène. Stau1 et Stau2 sont identiques à 50%. Les deux isoformes de Stau2, Stau259 et Stau262 ne diffèrent qu’en leur extrémité N-terminale. En effet, alors que Stau259 arbore un dsRBD1 tronqué, celui de Stau262 est complet. Ces observations introduisent une problématique très intéressante à laquelle nous nous sommes attaqué : ces différentes protéines, quoique très semblables, font-elles partie de complexes ribonucléoprotéiques distincts ayant des fonctions propres à chacun ou, au contraire, vu cette similarité de séquence, travaillent-elles de concert au sein des mêmes complexes ribonucléoprotéiques? Afin d’adresser cette question, nous avons entrepris d’isoler, à partir de cellules HEK293T, les différents complexes de Stau1 et Stau2 par la technique d’immunoprécipitation. Nous avons isolé les ARNm associés à chaque protéine, les avons identifiés grâce aux micropuces d’ADN et avons confirmé nos résultats par RT-PCR. Malgré la présence d’une population commune d’ARNm associée à Stau1 et Stau2, la majorité des transcrits identifiés furent spécifiques à chaque orthologue. Cependant, nous avons remarqué que les diverses populations d’ARNm participaient aux mêmes mécanismes de régulation, ce qui suggère que ces deux protéines possèdent des rôles complémentaires dans la mise en œuvre de divers phénomènes cellulaires. Au contraire, les transcrits associés à Stau259 et Stau262 sont davantage similaires, indiquant que celles-ci auraient des fonctions plutôt semblables. Ces résultats sont très intéressants, car pour la première fois, nous avons identifié des populations d’ARNm associées aux isoformes Stau155, Stau259 et Stau262. De plus, nous les avons analysées en parallèle afin d’en faire ressortir les populations spécifiques à chacune de ces protéines. Ensuite, connaissant l’importance de Stau2 dans le transport dendritique d’ARNm, nous avons cherché à caractériser les complexes ribonucléoprotéiques neuronaux associés à celle-ci. Dans un premier temps et à l’aide de la technique d’immunoprécipitation, nous avons identifié une population d’ARNm neuronaux associés à Stau2. Plus de 1700 ARNm montraient une présence d’au moins huit fois supérieure dans le précipité obtenu avec l’anticorps anti-Stau2 par rapport à celui obtenu avec le sérum pré-immun. Ces ARNm codent pour des protéines impliquées dans des processus de modifications post-traductionnelles, de traduction, de transport intracellulaire et de métabolisme de l’ARN. De façon intéressante, cette population d’ARNm isolée du cerveau de rat est relativement différente de celle caractérisée des cellules humaines HEK293T. Ceci suggère que la spécificité d’association Stau2-ARNm peut diffèrer d’un tissu à un autre. Dans un deuxième temps, nous avons isolé les protéines présentes dans les complexes ribonucléoprotéiques obtenus de cerveaux de rat et les avons identifiées par analyse en spectrométrie de masse. De cette façon, nous avons identifié au sein des particules de Stau2 des protéines liant l’ARN (PABPC1, hnRNPH1, YB1, hsc70), des protéines du cytosquelette (α- et β-tubuline), de même que la protéine peu caractérisée RUFY3. En poussant davantage la caractérisation, nous avons établi que YB1 et PABPC1 étaient associées à Stau2 grâce à la présence de l’ARN, alors que la protéine hsc70, au contraire, interagissait directement avec celle-ci. Enfin, cette dernière association semble être modulable par l’action de l’ATP. Ce résultat offre de nombreuses possibilités quant à la régulation de la fonction de Stau2 et/ou de son mRNP. Entre autres, cette étude suggère un mécanisme de régulation de la traduction au sein de ces particules. Pour faire suite à la caractérisation des mRNP de Stau, nous avons voulu déterminer au niveau neurophysiologique l’importance de ceux-ci. Comme l’étude de Stau2 avait déjà été entreprise préalablement par un autre laboratoire, nous avons décidé de concentrer notre étude sur le rôle de Stau1. Ainsi, nous avons démontré que celle-ci était nécessaire à la mise en place d’une forme de plasticité synaptique à long terme, la forme tardive de potentialisation à long terme ou L-LTP, dépendante de la transcription et de l’activité des récepteurs NMDA. La transmission de base, de même que la faculté de ces épines à faire de la E-LTP, la forme précoce de potentialisation à long terme, et la dépression à long terme ou LTD sont conservées. Ceci indique que les épines conservent la capacité d’être modulées. Ainsi, l’inhibition de la L-LTP, suite à la sous-expression de Stau1, n’est pas simplement due à la perte d’éléments fonctionnels, mais réside plutôt dans l’incapacité de ceux-ci à induire les changements synaptiques spécifiquement nécessaires à la mise en place de la L-LTP. De plus, au niveau synaptique, la sous-expression de Stau1 réduit à la fois l’amplitude et la fréquence des mEPSC. Ces résultats concordent avec l’observation que la sous-expression de Stau1 augmente significativement la proportion d’épines allongées et filopodales, des épines formant des synapses dites silencieuses. Par le fait même, elle diminue le nombre d’épines fonctionnelles, de forme dite normale. Ainsi, nous avons été en mesure de démontrer que l’absence, au niveau neuronal, de la protéine Stau1 induisait un déficit probable dans la localisation et/ou la traduction d’ARNm responsable de la restructuration de l’épine et de facteurs nécessaires à la mise en place de la L-LTP. En conclusion, nous avons participé à lever le voile sur la composition et l’importance des complexes ribonucléoprotéiques de Stau1 et Stau2. Nous avons identifié des populations distinctes et communes d’ARNm associées aux différents isoformes de Stau, à partir des mRNP présents au sein des cellules HEK293. De plus, nous avons réussi à mettre à l’avant plan certaines composantes des mRNP neuronaux de Stau2, dont un partenaire protéique direct, hsc70, partenaire dont l’association est modulable par l’action de l’ATP, ainsi qu’une population neuronale de transcrits d’ARNm. Enfin, nous avons mis en lumière l’importance de Stau1 dans la morphologie des épines dendritiques ainsi que dans le phénomène de la plasticité synaptique. / In the cell, the expression of each mRNA is finely tuned transcriptionally, but also, at the level of translation, degradation and intracellular localisation. These mechanisms of regulation are important in order to control the expression of each translational product at the right time and place. When a physiological phenomenon is activated, the expression of multiple functionally-related mRNAs must be simultaneously regulated. To orchestrate the coordinated expression of all the transcripts that respond to specific cell needs, it is advantageous to regulate the function of a common trans-acting factor that associates with them. Such a mechanism permits to control the fate of a sub-population of mRNAs according to the factors to which they are bound. As a means to learn more about the regulation of mRNAs in ribonucleoprotein complexes (mRNP), we decided to focus our study on the characterisation of Staufen-associated mRNPs. In mammalian cells, two Staufen paralogs, Stau1 and Stau2, are expressed and each gene generates different isoforms through differential splicing. Staufen proteins are double-stranded RNA binding proteins implicated in numerous aspects of the post-transcriptional regulation of mRNAs such as degradation, translation and localisation. Stau1 and Stau2 are similar proteins with an overall percentage identity of around 50%. This percentage increases to near 75% when only the functional double-stranded RNA-binding domains (dsRBD3) are compared. Similarly, Stau2 isoforms, Stau259 and Stau262, are perfectly identical except at the N-terminal extremity where the sequence of Stau262 is extended as compared to that of Stau259. Therefore, their RNA-binding domain 3 are perfectly identical. These observations bring in an interesting problematic. Are those almost identical proteins part of the same mRNP, acting in conjunction or, despite their high similarities, are they part of distinct mRNP participating in specific function? In order to address this question, we decided to immunoprecipitated from HEK293 cells, Stau155, Stau259 and Stau262-associated mRNPs and identify bound mRNAs. Resulting mRNAs isolated from each complex were identified by microarray analysis. There is a predominance of mRNAs involved in cell metabolism, transport, transcription and regulation of cell processes. The presence of at least some of these transcripts in specific mRNP was confirmed by RT-PCR. Despite the presence of a common population of mRNA associated with both Stau1 and Stau2, the majority of the transcripts were specific to each paralog. Interestingly, we observed that transcripts associated with either Stau1 or Stau2 were nevertheless involved in the same pathways of cell regulation, suggesting that both proteins have complementary roles in the same cellular processes. On the other hand, mRNAs associated with Stau259 and Stau262 were more similar. This suggests that these two isoforms might have more overlapping functions. Consistent with a model of post-transcriptional gene regulation, our results show that Stau1- and Stau2-mRNPs associate with distinct but overlapping sets of cellular mRNAs and that these mRNAs are nevertheless involved in common pathways. It is consistent with the high degree of sequence similarity between Stau1 and Stau2 that predicts that they may have conserved convergent functions and with the observation that they are distributed in distinct mRNP complexes in neurites. Knowing the importance of Stau2 in the transport of dendritic mRNA and to further understand the molecular mechanisms by which it modulates synaptic function, we decided to characterise Stau2-containing mRNPs in neurons. Using anti-Stau2 antibody to immunoprecipitate the mRNPs, we have identified a population of more than 1700 transcripts associated with Stau2 in embryonic rat brain. These mRNAs code for proteins involved in cellular processes such as post-translational modification, translation, intracellular transport and RNA metabolism. Interestingly, Stau2-associated mRNAs isolated form rat brains are relatively different from those isolated from HEK293 cells. This result suggests that the specificity of Stau2-mRNA association can differ from one tissue to the other. Similarly, we have identified the proteins presents in Stau2-containing complexes isolated from embryonic rat brains by a proteomic approach. We were able to determine the presence of mRNA-binding proteins (PABPC1, hnRNP H1, YB1 and hsc70), proteins of the cytoskeleton (α- and β -tubulin) and RUFY3 a poorly characterized protein. While PABPC1 and YB1 associate with Stau2-containing mRNPs through RNAs, hsc70 is directly bound to Stau2 and this interaction is regulated by ATP. The presence of the RNA-binding proteins YB1 and PABPC1, both involved in translation regulation, suggests that the expression of Stau2-bound mRNAs may be regulated at the level of translation initiation. Finally, it is well known that synaptic plasticity requires mRNA transport in dendrites and their local translation. Since the study of the neurophysiological role of Stau2 was already in progress we decided to concentrate our energy on the function of Stau1. Therefore, we studied the importance of Stau1 protein at the neurophysiological level, especially looking for a role in synaptic plasticity. We were able to demonstrate that Stau1 is required for the late form of long term synaptic potentiation, L-LTP, a plasticity dependent not only on local translation of mRNAs, but also on newly transcribed and transported mRNAs. Using hippocampal slices, we showed that Stau1 down-regulation by RNA interference prevents the development and/or maintenance of L-LTP. However, neurons displayed normal early-LTP, mGluR1/5-mediated long-term depression, or basal evoked synaptic transmission. In addition, at the cellular level, Stau1 down-regulation shifted spine shape from regular to elongated spines, without changes in spine density. The change in spine shape could be rescued by an RNA interference-resistant Stau1 isoform. Therefore, Stau1 is important for processing and/or transporting in dendrites mRNAs that are critical in regulation of synaptic strength and maintenance of functional connectivity changes underlying hippocampus dependent learning and memory. In conclusion we were able to further reveal the composition and the importance of the Stau1 and Stau2 mRNP. First, we have identified distinct and overlapping population of mRNAs associated to the diverse isoform of Stau, form HEK293 cells. Second, we were able to identify a population of neuronal transcript as well as some proteins factors present in the Stau2 particles. One of which, hsc70, is directly bound to Stau2 and its interaction is regulated by the presence of ATP. Finally, we have demonstrated the importance of Stau1 in the morphology of the dendritic spine as well as its fundamental implication in synaptic plasticity.
10

Etude de l'effet de mutations du gène SHANK3 dans les TSA à partir de neurones corticaux humains dérivés de cellules souches pluripotentes induites / Study of the effect of SHANK3 gene mutations in TSA from human cortical neurons derived from induced pluripotent stem cells

Gouder, Laura 18 November 2016 (has links)
Les Troubles du Spectre Autistique (TSA) affectent un individu sur 100 en France et sont caractérisés par des déficits de la communication et des interactions sociales ainsi que par la présence d’intérêts restreints et de comportements répétitifs. Le laboratoire a démontré l’implication de protéines synaptiques dans le développement des TSA et en particulier celle des protéines SHANK. Ces protéines sont des protéines d’échafaudage présentes au niveau de la densité post-synaptique (PSD) des neurones glutamatergiques et interagissant avec différents partenaires. Dans le cadre de mon projet de thèse, nous nous sommes particulièrement intéressés à la protéine SHANK3. Des mutations au sein du gène SHANK3 ont été détectées chez environ 1 à 2% des patients, selon le degré de sévérité du retard mental. Un déficit de SHANK3 altère le fonctionnement synaptique. En effet, des analyses sur modèles de souris invalidées pour le gène SHANK3 ont montré une diminution de la densité des épines dendritiques, de la taille de la densité post-synaptique et de l’expression des partenaires protéiques de SHANK3. Mon modèle principal d’analyse a consisté en la reprogrammation de fibroblastes en cellules pluripotentes induites (iPSC « induced pluripotent stem cells »). Les iPSCs ont ensuite été sélectivement dérivées en neurones corticaux. Nos études se sont focalisées sur l’analyse des conséquences fonctionnelles de mutations de novo du gène SHANK3 retrouvées chez 4 patients à l’état hétérozygote et présentes au sein de l’exon 21. Ces mutations conduisent à un codon stop prématuré. En parallèle, nous avons obtenu des cellules de 4 individus témoins ne présentant aucun trouble psychiatrique identifié. L’analyse a porté d’une part sur des aspects morphologiques et d’autre part sur des aspects fonctionnels. Nous avons étudié l’effet des mutations sur la maturation et les caractéristiques morphologiques des épines dendritiques. Nous avons établi un protocole permettant une analyse détaillée de la morphologie en 3D des épines dendritiques et suivi leur maturation. Un résultat majeur est l’observation d’une diminution de la densité des épines sur les dendrites des neurones pyramidaux issus des patients par rapport aux témoins. Comme attendu, la maturation des épines n’est pas complètement achevée mais varie peu dans son évolution d’un individu à l’autre (témoins vs. patients). Nous avons poursuivi ces études par deux approches fonctionnelles : l’imagerie calcique et des études d’électrophysiologie. Les données électrophysiologiques sont en cours d’analyse. En conclusion, nous avons pu obtenir des cultures de neurones corticaux glutamatergiques et les maintenir en culture durant 40 jours pour effectuer différentes analyses à un stade de maturation suffisant pour la mise en évidence de phénotypes morphologiques et fonctionnels. Nous avons principalement observé une diminution de des densités synaptiques et de maturation des épines dendritiques au sein des neurones issus de patients liée à des altérations d’oscillations calciques spontanées. / Autism Spectrum Disorders (ASD) is a neurodevelopmental disorder affecting 1% of population ; characterised by impairments in social interaction and reciprocal communication as well as repetitive and stereotyped behaviors. The work of the laboratory lead to the identification of several genes associated with ASD, among which genes of the synaptic pathway such as SHANK. The SHANK proteins are scaffolding proteins of the post-synaptic density (PSD) of glutamatergic neurons and interact with several partners. In my thesis project, we were particularly interested in SHANK3 mutations. First, Shank3 mutations represent up to 2.12% of ASD cases with moderate to high ID. A SHANK3 deficit leads to the alteration of the synaptic functioning. Indeed, studies of mice KO for SHANK3 gene showed a decrease of the dendritic spines density, of the PSD size and of the expression of SHANK3 partners. My principal model of analysis consisted in the reprogrammation of fibroblasts into induced pluripotent stem cells (iPSCs). Then, the iPSCs were selectively derived into cortical neurons. Our studies were focus on the analysis of functional consequences of SHANK3 de novo mutations found within 4 patients. These mutations are heterozygous and within the exon 21. They result in a premature stop codon. In parallel, we obtained cells from 4 healthy individuals. The work was about the morphological and functional aspects. We analysed the mutations effects on the maturation and morphological caracteristics of the dendritic spines. We finalized a protocol that enabled a detailed analysis of the spine dendritic 3D morphology and their maturation follow-up. A important result was the observation of a decrease of the spine density on pyramidal neurons dendrites from patients compared to those from controls. Moreover, spines maturation was not fully accomplished but was not much different in its evolution between individuals (controls vs patients). Then, we used two functional skills : calcium imaging and electrophysiological experiments. The electrophysiological data are in progress. To conclude, we succeeded in the obtention of glutamatergic cortical neurons and to maintain them in culture during 40 days in order to realize some analysis at a sufficient maturation stage to observe morphological and functional phenotypes. We mainly observed a decrease of the dendritic spines density and maturation for the neurons from patients, with alterations of the spontaneous calcium oscillations.

Page generated in 0.0871 seconds