• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formal Methods in Computer-aided Design

Mangassarian, Hratch 30 August 2012 (has links)
The VLSI CAD flow encompasses an abundance of critical NP-complete and PSPACE-complete problems. Instead of developing a dedicated algorithm for each, the trend during the last decade has been to encode them in formal languages, such as Boolean satisfiability (SAT) and quantified Boolean formulas (QBFs), and focus academic resources on improving SAT and QBF solvers. The significant progress of these solvers has validated this strategy. This dissertation contributes to the further advancement of formal techniques in CAD. Today, the verification and debugging of increasingly complex RTL designs can consume up to 70% of the VLSI design cycle. In particular, RTL debug is a manual, resource-intensive task in the industry. The first contribution of this thesis is an in-depth examination of the factors affecting the theoretical computational complexity of debugging. It is established that most variations of the debugging problem are NP-complete. Automated debugging tools return all potential error sources in the RTL, called solutions, that can explain a given failing error trace. Finding each solution requires a separate call to a formal engine, which is computationally expensive. The second contribution of this dissertation comprises techniques for reducing the number of such iterations, by leveraging dominance relationships between RTL blocks to imply solutions. Extensive experiments on industrial designs show a three-fold reduction in the number of formal engine calls due to solution implications, resulting in a 1.64x overall speed-up. The third contribution aims to advance the state-of-the-art of QBF solvers, whose progress has not been as impressive as that of SAT solvers. We present a framework for using complete dominators to preprocess and reduce QBFs with an inherent circuit structure, which is common in encodings of PSPACE-complete CAD problems. Experiments show that three modern QBF solvers together solve 55% of preprocessed QBF instances, compared to none without preprocessing. The final contribution consists of a series of QBF encodings for evaluating the reconfigurability of partially programmable circuits (PPCs). The metrics of fault tolerance, design error tolerance and engineering change coverage are defined for PPCs and encoded using QBFs. These formulations along with experimental results demonstrate the theoretical and practical appropriateness of QBFs for dealing with reconfigurability.
2

Formal Methods in Computer-aided Design

Mangassarian, Hratch 30 August 2012 (has links)
The VLSI CAD flow encompasses an abundance of critical NP-complete and PSPACE-complete problems. Instead of developing a dedicated algorithm for each, the trend during the last decade has been to encode them in formal languages, such as Boolean satisfiability (SAT) and quantified Boolean formulas (QBFs), and focus academic resources on improving SAT and QBF solvers. The significant progress of these solvers has validated this strategy. This dissertation contributes to the further advancement of formal techniques in CAD. Today, the verification and debugging of increasingly complex RTL designs can consume up to 70% of the VLSI design cycle. In particular, RTL debug is a manual, resource-intensive task in the industry. The first contribution of this thesis is an in-depth examination of the factors affecting the theoretical computational complexity of debugging. It is established that most variations of the debugging problem are NP-complete. Automated debugging tools return all potential error sources in the RTL, called solutions, that can explain a given failing error trace. Finding each solution requires a separate call to a formal engine, which is computationally expensive. The second contribution of this dissertation comprises techniques for reducing the number of such iterations, by leveraging dominance relationships between RTL blocks to imply solutions. Extensive experiments on industrial designs show a three-fold reduction in the number of formal engine calls due to solution implications, resulting in a 1.64x overall speed-up. The third contribution aims to advance the state-of-the-art of QBF solvers, whose progress has not been as impressive as that of SAT solvers. We present a framework for using complete dominators to preprocess and reduce QBFs with an inherent circuit structure, which is common in encodings of PSPACE-complete CAD problems. Experiments show that three modern QBF solvers together solve 55% of preprocessed QBF instances, compared to none without preprocessing. The final contribution consists of a series of QBF encodings for evaluating the reconfigurability of partially programmable circuits (PPCs). The metrics of fault tolerance, design error tolerance and engineering change coverage are defined for PPCs and encoded using QBFs. These formulations along with experimental results demonstrate the theoretical and practical appropriateness of QBFs for dealing with reconfigurability.
3

A new algorithm for the quantified satisfiability problem, based on zero-suppressed binary decision diagrams and memoization

Ghasemzadeh, Mohammad January 2005 (has links)
Quantified Boolean formulas (QBFs) play an important role in theoretical computer science. QBF extends propositional logic in such a way that many advanced forms of reasoning can be easily formulated and evaluated. In this dissertation we present our ZQSAT, which is an algorithm for evaluating quantified Boolean formulas. ZQSAT is based on ZBDD: Zero-Suppressed Binary Decision Diagram / which is a variant of BDD, and an adopted version of the DPLL algorithm. It has been implemented in C using the CUDD: Colorado University Decision Diagram package. <br><br> The capability of ZBDDs in storing sets of subsets efficiently enabled us to store the clauses of a QBF very compactly and let us to embed the notion of memoization to the DPLL algorithm. These points led us to implement the search algorithm in such a way that we could store and reuse the results of all previously solved subformulas with a little overheads. ZQSAT can solve some sets of standard QBF benchmark problems (known to be hard for DPLL based algorithms) faster than the best existing solvers. In addition to prenex-CNF, ZQSAT accepts prenex-NNF formulas. We show and prove how this capability can be exponentially beneficial. <br><br> / In der Dissertation stellen wir einen neuen Algorithmus vor, welcher Formeln der quantifizierten Aussagenlogik (engl. Quantified Boolean formula, kurz QBF) löst. QBFs sind eine Erweiterung der klassischen Aussagenlogik um die Quantifizierung über aussagenlogische Variablen. Die quantifizierte Aussagenlogik ist dabei eine konservative Erweiterung der Aussagenlogik, d.h. es können nicht mehr Theoreme nachgewiesen werden als in der gewöhnlichen Aussagenlogik. Der Vorteil der Verwendung von QBFs ergibt sich durch die Möglichkeit, Sachverhalte kompakter zu repräsentieren. <br><br> SAT (die Frage nach der Erfüllbarkeit einer Formel der Aussagenlogik) und QSAT (die Frage nach der Erfüllbarkeit einer QBF) sind zentrale Probleme in der Informatik mit einer Fülle von Anwendungen, wie zum Beispiel in der Graphentheorie, bei Planungsproblemen, nichtmonotonen Logiken oder bei der Verifikation. Insbesondere die Verifikation von Hard- und Software ist ein sehr aktuelles und wichtiges Forschungsgebiet in der Informatik. <br><br> Unser Algorithmus zur Lösung von QBFs basiert auf sogenannten ZBDDs (engl. Zero-suppressed Binary decision Diagrams), welche eine Variante der BDDs (engl. Binary decision Diagrams) sind. BDDs sind eine kompakte Repräsentation von Formeln der Aussagenlogik. Der Algorithmus kombiniert nun bekannte Techniken zum Lösen von QBFs mit der ZBDD-Darstellung unter Verwendung geeigneter Heuristiken und Memoization. Memoization ermöglicht dabei das einfache Wiederverwenden bereits gelöster Teilprobleme. <br><br> Der Algorithmus wurde unter Verwendung des CUDD-Paketes (Colorado University Decision Diagram) implementiert und unter dem Namen ZQSAT veröffentlicht. In Tests konnten wir nachweisen, dass ZQSAT konkurrenzfähig zu existierenden QBF-Beweisern ist, in einigen Fällen sogar bessere Resultate liefern kann.

Page generated in 0.0164 seconds