• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • Tagged with
  • 17
  • 17
  • 17
  • 17
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Controlled Drift Detector As An X-ray Imaging Device For Diffraction Enhanced Imaging

Ozkan, Cigdem 01 February 2009 (has links) (PDF)
Diffraction Enhanced Imaging (DEI) is an X-ray imaging technique providing specific information about the molecular structure of a tissue by means of coherently scattered photons. A Controlled Drift Detector (CDD) is a novel 2D silicon imager developed to be used in X-ray imaging techniques. In this work a final (complete and detailed) analysis of DEI data taken with the CDD in the ELETTRA synchrotron light source facility in Trieste (Italy) in 2005, is presented and the applicability of both this new technique and the novel detector are discussed.
12

Time Resolved Spectroscopy Of Laser Induced Air Plasma

Kurt, Mustafa 01 September 2007 (has links) (PDF)
The laser beam interaction with matter and the plasma generation have been studied for many years. In some applications what is really important is to understand the composition and the temporal evolution of the species in the interested medium. In this thesis, time resolved optical spectroscopy was employed to understand the evolution of the plasma which is produced by interaction of Infrared (1.064 &micro / m) laser beam with air. In this thesis, a new technique is suggested to analyze the time evolution of laser induced breakdown spectroscopy. The suggested method and the instrumentation of the setup are tested with a single gas (He). After the tests, we analyzed time sequence spectra of Laser Induced Air Breakdown. The suggested method is based on triggering the laser and the spectrometer at different time and applying the spectrometer trigger time by adding the time delay (&amp / #916 / t) between them by using the pulse generator. The results show that the decay rates are slowing down microseconds after the excitation of the plasma. The results of the time-resolved measurements of the line spectra show that different component of the air has different decay rate, and lifetime. The lifetime of helium is 20 &micro / s, and the decay start 5 &micro / s after the initiation of plasma. Air has 12 &micro / s lifetime, and the decay start 3 &micro / s after the initiation of the plasma. Also, the decay rate and the lifetime depend on the state. We also calculate Doppler velocity for different component and different emission states. Doppler velocities show that the component which has great mass has small velocity, the component which has small mass has high velocity.
13

Si Nanocrystals In Sic Matrix And Infrared Spectroscopy Of In A Dielecric Matrix

Gencer Imer, Arife 01 May 2010 (has links) (PDF)
This study focuses on various aspects of nanocrystals embedded in a dielectric matrix. In the first part of this work, a new approach with the use of Fourier Transform Infrared spectroscopy (FTIR) in the nanocrystal analysis was developed and presented. Si and Ge nanocrystals embedded in SiO2 matrix were mainly studied. This new approach is based on the analysis of structural variations of SiO2 matrix during the formation of semiconductor nanocrystlas. It is shown that the chemical and structural variations of the host matrix are directly related to the precipitation of nanocrystals in it. This correlation provides valuable information about the presences of nanocrystals in the matrix. In the second part of this work, fabrication of SiC films with and without Si nanocrystals inclusions was studied. With this aim, stoichiometric SiC and Si rich SiC thin films were fabricated by using magnetron co-sputtering and Plasma Enhanced Chemical Vapor Deposition (PECVD) techniques. For SiC films, the structural and optical analyses were performed. For Si rich SiC films, the formation conditions of Si nanocrystals were investigated. Post annealing studies were carried out to track the evolution of the SiC matrix and formation of Si nanocrystals at different temperatures. Chemical and structural properties of the SiC host matrix were investigated with FTIR spectroscopy. Optimum conditions for the fabrication of stoichiometric SiC layers were determined. The crystallography of the nanocrystals was investigated by X-Ray Diffraction (XRD). The variation of the atomic concentrations and bond formations were investigated with X-Ray Photoelectron Spectroscopy (XPS). Raman spectroscopy and Transmission Electron Microscopy (TEM) were used to verify the formation of Si nanocrystals. We have shown that both single and multilayer Si nanocrystals can be fabricated in the amorphous SiC matrix for applications such as light emitting diodes and solar cells.
14

Instability Studies In Amorphous Silicon Based Alloys

Ozdemir, Orhan 01 January 2004 (has links) (PDF)
The pixel element which is an integrated combination of a p-i-n diode with a thin film transistor (TFT) is used to produce image sensor arrays in scanning and displays technologies, necessitating the deposition of hydrogenated silicon based semiconducting and insulating thin films such as a-Si:H, a-SiNx:H over large area. The widely used techniques to achieve this goal is the plasma enhanced chemical vapor deposition (PECVD) due to its large area and low temperature (&amp / #61603 / 300 &amp / #61616 / C) abilities. In particular, PECVD has proved to be able to deposit both high quality insulator (a-SiNx:H) and active layer of p-i-n diode (intrinsic hydrogenated amorphous silicon carbide, a-SiCx:H) and by sequential deposition, it is possible to minimize the interface related problems, which play an important role in metal insulator semiconductor (MIS) and TFT structures. PECVD deposited a-SiCx:H films over p-type crystal Si and metal substrates (MIS and MIM) were investigated by both admittance spectroscopy (Capacitance or conductance vs. voltage, temperature or frequency measurements) and Deep Level Transient spectroscopy (DLTS) to investigate the interface related problems. In this respect, instability phenomena (due to the creation of metastable states and charge injection into the gate electrode) were studied via the c-Si/a-SiCx:H (and/or a-SiNx:H) heterojunction. Specially, capacitance voltage kinetics were worked out and then the enrolled trap energies were identified with temperature mode DLTS. The expertise gathered as a result of these studies were used in the fabrication and characterization of TFT&amp / #65533 / s. In this respect, inverted gate staggered type Thin Film Transistor produced and characterized for the first time after Combo-251 Pattern Generator was implemented.
15

Exciton Simulations Of The Optical Properties Of Several Photosynthetic Light-harvesting Complexes

Iseri, Erkut Inan 01 June 2004 (has links) (PDF)
The work presented in this thesis was aimed to investigate the structure-function relationship of several photosynthetic Light-Harvesting Complexes (LHCs) including Chlorophyll Protein 29 (CP29) and Light-Harvesting Complex II (LHCII) of green plants, and Fenna-Matthews-Olson (FMO) complex of green sulfur bacterium Chlorobium tepidum. Based on the exciton calculations, a model was proposed to the electronic excited states (EES) of both CP29 and LHCII complexes by incorporating a considerable part of the current information offered by structure determination, mutagenesis analysis and spectroscopy in the modeling. The essential parameters for characterizing the excited states, Qy dipole orientations and site energies were assigned by suggesting a model that can explain both the key features of the linear (polarized) absorption spectra and the time scales of the energy transfer processes in CP29 and LHCII. The idea of offering structural information through setting connection between the spectroscopy and the spectral simulations were supported by the presented results on CP29 and LHCII. New spectroscopic measurements (absorption, linear dichroism (LD) and circular dichroism), carried out at 4 K on the FMO complex were presented, and also the LD spectrum was corrected for the degree of orientation of the sample, in order to provide comparison of not only the shape but also the size of the simulated and experimental spectra. The EES structure of the FMO complex was studied by simulating the measured optical spectra with more realistic model than the previously applied models. Simulations have been carried out with a computer program based on exciton model, which includes inhomogeneous, homogeneous and lifetime broadenings explicitly.
16

Optical Characterization Of Silicon Based Hydrogenated Amorphous Thin Films By Uv-visible And Infrared Measurements

Kilic, Ilker 01 January 2006 (has links) (PDF)
Various carbon content hydrogenated amorphous silicon carbide (a-Si1&iexcl / xCx:H) and hydrogenated amorphous silicon (a-Si:H) thin films have been deposited on various substrates by using plasma enhanced chemical vapour deposition (PECVD) technique. Transmission spectra of these films have been determined within UV-Visible region and the obtained data were analysed to find related physical constants such as / refractive indices, thicknesses, etc. Fourier transform infrared (FT-IR) spectrometry technique has been used to determine transmission &amp / reflection type spectra of these films. Obtained data were analysed to determine bond structures of the films. E&reg / ects of relative concentration of ethylene (C2H4) gas on thin film bond structure and on optical constants have been questioned.
17

Material Characterization With Terahertz Time-domain Spectroscopy

Koseoglu, Devrim 01 January 2010 (has links) (PDF)
Terahertz time-domain spectroscopy systems were developed and used for the anaylsis and characterization of various materials. By using ultra-fast Ti:Sapphire and Er-doped fiber lasers, terahertz time-domain spectrometers of different configurations were constructed and tested. To increase the accuracy and sensitivity of the measurements, the systems were optimized for spectroscopic analysis. MBE grown nominally undoped epitaxial GaAs samples were used for the spectroscopic measurements. These samples were first charactrized by electrical measurements in order to check the accuracy of the terahertz time-domain experiments. We have shown that the terahertz time-domin spectroscopic techniques provides a quick way of the determining the real ( ) and complex () components of the refractive index of material. In addition, we have investigated the photoexcitation dynamics of these GaAs samples. We have demonstrated that direct and photoexcited terahertz time-domain measurements give an estimate of the carrier densities and both the hole and electron mobility values with good precision. rnin An algorithm is developed to prevent the unwanted Fabry-Perot reflections which is commonly encountered in Terahertz Spectroscopy systems. We have performed terahertz time-domain transmission measurements on ZnTe &lt / 110&gt / crystals of various thicknesses to test the applicability of this algorithm. We have shown that the algorithm developed provides a quick way of eliminating the &ldquo / etalon&rdquo / reflections from the data. In addition, it is also shown that these &ldquo / etalon&rdquo / effects can be used for the frequency calibration of terahertz time-domain spectrometers.

Page generated in 0.0626 seconds