1 |
Detekce QRS založená na vlnkové transformaci / QRS detection based on wavelet transformZedníček, Vlastimil January 2014 (has links)
This thesis deals with implementation of detector QRS complex with use of wavelet transform. The first part is focused on formation and possibility to measure cardiac activity. The other part of thesis we will familiarise with the different possibilities of detection QRS complex and we intimately focus on wavelet transform that will be used for a project of detection QRS complex. The practical part of thesis focuses on the project of detector in programming language Matlab and his different setting. This projected detector has been tested with CSE database. Achieved results of projected detector are evaluated with the results of others authors.
|
2 |
Rozměření signálu EKG pro analýzu TWA / Measurement of ECG signal for TWA analysisŘezáč, Petr January 2008 (has links)
The thesis deals with possibilities of using wavelet transform in the field of surface electrocardiogram (ECG) signals denoising and ECG signals measuring. Several algorithms have been used to detect and estimate T-wave alternans (TWA), such as spectral method (SM), Poincaré Mapping (PM) or correlation method (CM). T-wave alternans, also called repolarization alternans, is a phenomenon appearing in the electrocardiogram as a consistent fluctuation in the repolarization morphology on every-other-beat basis. Electrical TWA has been recognized as a marker of electrical instability, and has been shown to be related with patients at increased risk for ventricular arrhytmias. Presence of TWA has been reported in a wide range of clinical and experimental situations including long QT syndrome, myocardial infarction, angina pectoris, acute ischemia, etc. Projected methods of detection TWA are realized in Matlab software, and they are experimentally verified on real ECG signals from the European ST-T Database.
|
3 |
Analýza EKG signálů / ECG analysisHeczko, Marian January 2009 (has links)
The topic of this master's thesis is the analysis of ECG signals using wavelet transform. In the introductory chapters there is a brief description of heart anatomy, the emergence and spread of potentials, which evocating activities of myocardium. There is an overview of techniques used for ECG signals analysis and explanation of ECG curve diagnostic importance. Work also containts an ECG signal analysis common procedure explanation and different approaches brief overview. The main part of this work is an application detecting significant intervals in the ECG signal, developed in Matlab. In several chapters the detection procedure is described in more details and gave reasons for chosen methods. In the last chapter there is a preview of several signals as a result of developed application, together with evaluation of the tests carried out at the CSE database. Detector sensitivity was quantified over 99,10%.
|
4 |
Sledování trendů elektrické aktivity srdce časově-frekvenčním rozkladem / Monitoring Trends of Electrical Activity of the Heart Using Time-Frequency DecompositionČáp, Martin January 2009 (has links)
Work is aimed at the time-frequency decomposition of a signal application for monitoring the EKG trend progression. Goal is to create algorithm which would watch changes in the ST segment in EKG recording and its realization in the Matlab program. Analyzed is substance of the origin of EKG and its measuring. For trend calculations after reading the signal is necessary to preprocess the signal, it consists of filtration and detection of necessary points of EKG signal. For taking apart, also filtration and measuring the signal is used wavelet transformation. Source of the data is biomedicine database Physionet. As an outcome of the algorithm are drawn ST segment trends for three recordings from three different patients and its comparison with reference method of ST qualification. For qualification of the heart stability, as a system, where designed methods watching differences in position of the maximal value in two-zone spectrum and the Poincare mapping method. Realized method is attached to this thesis.
|
5 |
Finding the QRS Complex in a Sampled ECG Signal Using AI Methods / Hitta QRS komplex in en samplad EKG signal med AI metoderSkeppland Hole, Jeanette Marie Victoria January 2023 (has links)
This study aimed to explore the application of artificial intelligence (AI) and machine learning (ML) techniques in implementing a QRS detector forambulatory electrocardiography (ECG) monitoring devices. Three ML models, namely long short-term memory (LSTM), convolutional neural network (CNN), and multilayer perceptron (MLP), were compared and evaluated using the MIT-BIH arrhythmia database (MITDB) and the MIT-BIH noise stress test database (NSTDB). The MLP model consistently outperformed the other models, achieving high accuracy in R-peak detection. However, when tested on noisy data, all models faced challenges in accurately predicting R-peaks, indicating the need for further improvement. To address this, the study emphasized the importance of iteratively refining the input data configurations for achieving accurate R-peak detection. By incorporating both the MITDB and NSTDB during training, the models demonstrated improved generalization to noisy signals. This iterative refinement process allowed for the identification of the best models and configurations, consistently surpassing existing ML-based implementations and outperforming the current ECG analysis system. The MLP model, without shifting segments and utilizing both datasets, achieved an outstanding accuracy of 99.73 % in R-peak detection. This accuracy exceeded values reported in the literature, demonstrating the superior performance of this approach. Furthermore, the shifted MLP model, which considered temporal dependencies by incorporating shifted segments, showed promising results with an accuracy of 99.75 %. It exhibited enhanced accuracy, precision, and F1-score compared to the other models, highlighting the effectiveness of incorporating shifted segments. For future research, it is important to address challenges such as overfitting and validate the models on independent datasets. Additionally, continuous refinement and optimization of the input data configurations will contribute to further advancements in ECG signal analysis and improve the accuracy of R-peak detection. This study underscores the potential of ML techniques in enhancing ECG analysis, ultimately leading to improved cardiac diagnostics and better patient care. / Syftet med denna studie var att utforska användningen av AI- och ML-tekniker för att implementera en QRS-detektor i EKG-övervakningsenheter. Tre olika ML-modeller, LSTM, CNN och MLP jämfördes och utvärderades med hjälp av MITDB och NSTDB. Resultaten visade att MLP-modellen konsekvent presterade bättre än de andra modellerna och uppnådde hög noggrannhet vid detektion av R-toppar i EKG-signalen. Trots detta stötte alla modeller på utmaningar när de testades på brusig realtidsdata, vilket indikerade behovet av ytterligare förbättringar. För att hantera dessa utmaningar betonade studien vikten av att iterativt förbättra konfigurationen av indata för att uppnå noggrann detektering av R toppar. Genom att inkludera både MITDB och NSTDB under träningen visade modellerna förbättrad förmåga att generalisera till brusiga signaler. Denna iterativa process möjliggjorde identifiering av de bästa modellerna och konfigurationerna, vilka konsekvent överträffade befintliga ML-baserade implementeringar och presterade bättre än den nuvarande EKG-analysystemet. MLP-modellen, utan användning av skiftade segment och med båda databaserna, uppnådde en imponerande noggrannhet på 99,73 % vid detektion av R-toppar. Denna noggrannhet överträffade tidigare studier och visade på den överlägsna prestandan hos denna metod. Dessutom visade den skiftade MLP-modellen, som inkluderade skiftade segment för att beakta tidsberoenden, lovande resultat med en noggrannhet på 99,75 %. Modellen uppvisade förbättrad noggrannhet, precision och F1-score jämfört med de andra modellerna, vilket betonar vikten av att inkludera skiftade segment. För framtida studier är det viktigt att hantera utmaningar som överanpassning och att validera modellerna med oberoende datamängder. Dessutom kommer en kontinuerlig förfining och optimering av konfigurationen av indata att bidra till ytterligare framsteg inom EKG-signalanalys och förbättrad noggrannhet vid detektion av R-toppar. Denna studie understryker potentialen hos ML-modeller för att förbättra EKG-analysen och därigenom bidra till förbättrad diagnostik av hjärtsjukdomar och högre kvalitet inom patientvården.
|
Page generated in 0.045 seconds