• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 15
  • 11
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

EKG biofeedback / ECG Biofeedback

Macková, Pavlína January 2012 (has links)
The master’s thesis is focused on the possibilities of measuring heart rate of ECG signal and its use in therapeutic game of ECG biofeedback. This thesis describes the way of measuring ECG with acquisition unit Biopac and analyzes signal processing for measurement of heart rate – algorithms of QRS detection, HRV analysis. Realisation of therapeutic is designed for applications in Matlab.
12

Detekce QRS založená na počítání průchodů nulou / QRS detection using zero crossing counting

Hylmar, Petr January 2014 (has links)
This master's thesis describes basics principles of QRS complex detection. It is focused on QRS detection using zero crossing counts method. There are described princips and program realization of this method. The other part is focused on genetic optimalization algorithm. There are presented obtained optimalization results on standard CSE and MIT-BIH database. The quality of the detector is compared with other authors. The optimalized QRS detector achieves comparable results with other authors. The part of the thesis is graphical user interface which supply view on modified ECG signal and detection results.
13

Automatické rozměření signálů EKG / Automatic delineation of ECG signals

Vítek, Martin January 2011 (has links)
This dissertation deals with QRS complex detection and ECG delineation. The theoretical part of the work describes basics of electrocardiography, QRS detection approaches, ECG delineation approaches, the standard CSE database and the wavelet transform theory. The practical part of the work describes designed methods of QRS complex detection and ECG delineation. The designed methods are based on a continuous wavelet transform, appropriate scales, appropriate mother wavelet, cluster analysis and leads transformation. The introduced algorithms were evaluated on the standard CSE database. The obtained results are better, than directly comparable results of other methods and accomplished given database criteria. The robustness of designed algorithms was successfully tested on CSE database signals modified by compression and filtering. The proposed ECG delineation algorithm was successfully used as a tool for evaluation of diagnostic distortion of ECG signals modified by compression.
14

Heartbeat detection, classification and coupling analysis using Electrocardiography data

Li, Yelei 02 September 2014 (has links)
No description available.
15

Využití neuronových sítí v klasifikaci srdečních onemocnění / Use of neural networks in classification of heart diseases

Skřížala, Martin January 2008 (has links)
This thesis discusses the design and the utilization of the artificial neural networks as ECG classifiers and the detectors of heart diseases in ECG signal especially myocardial ischaemia. The changes of ST-T complexes are the important indicator of ischaemia in ECG signal. Different types of ischaemia are expressed particularly by depression or elevation of ST segments and changes of T wave. The first part of this thesis is orientated towards the theoretical knowledges and describes changes in the ECG signal rising close to different types of ischaemia. The second part deals with to the ECG signal pre-processing for the classification by neural network, filtration, QRS detection, ST-T detection, principal component analysis. In the last part there is described design of detector of myocardial ischaemia based on artificial neural networks with utilisation of two types of neural networks back – propagation and self-organizing map and the results of used algorithms. The appendix contains detailed description of each neural networks, description of the programme for classification of ECG signals by ANN and description of functions of programme. The programme was developed in Matlab R2007b.
16

Vícesvodová rozhodovací pravidla v rozměřování signálů EKG / Multilead decision rules in delineation of ECG signals

Richter, Zdeněk January 2012 (has links)
This work deals with ECG signal measuring and methods of its processing. It compares some of the QRS detection methods and describes some of the testing databases. In this work a detector of QRS complex is realized, it is based on the approach of zero crossings. Next section makes combination of results from separate leads to one, which improves efficiency of detection. One section of this work deals with design and realization delination of ECG signal. In the last part outputs of this delineation are compared with the results of the other authors.
17

EKG-analys och presentation / ECG analysis and presentation

Engström, Magnus, Soheily, Nadia January 2014 (has links)
Tolkningen av EKG är en viktig metod vid diagnostisering av onormala hjärttillstånd och kan användas i förebyggande syfte att upptäcka tidigare okända hjärtproblem. Att enkelt kunna mäta sitt EKG och få det analyserat och presenterat på ett pedagogiskt sätt utan att behöva rådfråga en läkare är något det finns ett konsumentbehov av. Denna rapport beskriver hur en EKG-signal behandlas med olika algoritmer och metoder i syfte att detektera hjärtslag och dess olika parametrar. Denna information används till att klassificera varje hjärtslag för sig och därmed avgöra om användaren har en normal eller onormal hjärtfunktion. För att nå dit har en mjukvaruprototyp utvecklats där algoritmerna implementerats. En enkätundersökning gjordes i syfte att undersöka hur utdata från mjukvaruprototypen skulle presenteras för en vanlig användare utan medicinsk utbildning. Sju filer med EKG-signaler från MIT-BIH Arrhythmia Database användes för testning av mjukvaruprototypen. Resultatet visade att prototypen kunde detektera en rad olika hjärtfel som låg till grund vid fastställning om hjärtat slog normalt eller onormalt. Resultatet presenterades på en mobilapp baserad på enkätundersökningen. / The interpretation of the ECG is an important method in the diagnosis of abnormal heart conditions and can be used proactively to discover previ-ously unknown heart problems. Being able to easily measure the ECG and get it analyzed and presented in a clear manner without having to consult a doctor is improtant to satisfy consumer needs. This report describes how an ECG signal is treated with different algo-rithms and methods to detect the heartbeat and its various parameters. This information is used to classify each heartbeat separately and thus determine whether the user has a normal or abnormal cardiac function. To achieve this a software prototype was developed in which the algorithms were implemented. A questionnaire survey was done in order to examine how the output of the software prototype should be presented for a user with no medical training. Seven ECG files from MIT-BIH Arrhythmia database were used for validation of the algorithms. The developed algorithms could detect of if any abnormality of heart function occurred and informed the users to consult a physician. The presentation of the heart function was based on the result from the questioner.
18

Využití neuronových sítí pro klasifikaci alternací vlny T / Application of neural networks for classification of T-wave alternations

Procházka, Tomáš January 2008 (has links)
This thesis deals with analysis of T-wave Alternans (TWA), periodical changes of T wave in ECG signal. Presence of these alternans may predict higher risk of sudden cardiac death. From the several possible ways of TWA classification, the training algorithms of self organizing maps are used in this thesis. Result of the thesis is a program, which in the first step detects QRS complexes in the signal. Then, in the next step, gained reference points are used for T-waves detection. Detected waves are represented by a vector of significant points, which is used as an input for artificial neural network. Final output of the program is a decision about presence of TWA in the signal and its rate.

Page generated in 0.0882 seconds