• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Model Based Testing for Non-Functional Requirements

Cherukuri, Vijaya Krishna, Gupta, Piyush January 2010 (has links)
<p>Model Based Testing (MBT) is a new-age test automation technique traditionally used for Functional Black-Box Testing. Its capability of generating test cases by using model developed from the analysis of the abstract behavior of the System under Test is gaining popularity. Many commercial and open source MBT tools are available currently in market. But each one has its own specific way of modeling and test case generation mechanism that is suitable for varied types of systems. Ericsson, a telecommunication equipment provider company, is currently adapting Model Based Testing in some of its divisions for functional testing. Those divisions haven’t yet attempted adapting Model Based Testing for non-functional testing in a full-pledged manner. A comparative study between various MBT tools will help one of the Ericsson’s testing divisions to select the best tool for adapting to its existing test environment. This also helps in improving the quality of testing while reducing cost, time and effort. This thesis work helps Ericsson testing division to select such an effective MBT tool. Based on aspects such as functionality, flexibility, adaptability, performance etc., a comparative study is carried out on various available MBT tools and a few were selected among them: Qtronic, ModelJUnit and Elvior Motes.This thesis also helps to understand the usability of the selected tools for modeling of non-functional requirements using a new method. A brief idea of modeling the non-functional requirements is suggested in this thesis. A System under Test was identified and its functional behavior was modeled along with the non functional requirements in Qtronic and ModelJUnit. An experimental analysis, backed by observations of using the new proposed method indicates that the method is efficient enough to carry out modeling non-functional requirements along with modeling of functional requirements by identifying the appropriate approach.Model Based Testing (MBT) is a new-age test automation technique traditionally used for Functional Black-Box Testing. Its capability of generating test cases by using model developed from the analysis of the abstract behavior of the System under Test is gaining popularity. Many commercial and open source MBT tools are available currently in market. But each one has its own specific way of modeling and test case generation mechanism that is suitable for varied types of systems. Ericsson, a telecommunication equipment provider company, is currently adapting Model Based Testing in some of its divisions for functional testing. Those divisions haven’t yet attempted adapting Model Based Testing for non-functional testing in a full-pledged manner. A comparative study between various MBT tools will help one of the Ericsson’s testing divisions to select the best tool for adapting to its existing test environment. This also helps in improving the quality of testing while reducing cost, time and effort. This thesis work helps Ericsson testing division to select such an effective MBT tool. Based on aspects such as functionality, flexibility, adaptability, performance etc., a comparative study is carried out on various available MBT tools and a few were selected among them: Qtronic, ModelJUnit and Elvior Motes.</p><p>This thesis also helps to understand the usability of the selected tools for modeling of non-functional requirements using a new method. A brief idea of modeling the non-functional requirements is suggested in this thesis. A System under Test was identified and its functional behavior was modeled along with the non functional requirements in Qtronic and ModelJUnit. An experimental analysis, backed by observations of using the new proposed method indicates that the method is efficient enough to carry out modeling non-functional requirements along with modeling of functional requirements by identifying the appropriate approach.</p>
2

Model-Based Testing: An Evaluation

Nordholm, Johan January 2010 (has links)
<p>Testing is a critical activity in the software development process in order to obtain systems of high quality. Tieto typically develops complex systems, which are currently tested through a large number of manually designed test cases. Recent development within software testing has resulted in methods and tools that can automate the test case design, the generation of test code and the test result evaluation based on a model of the system under test. This testing approach is called model-based testing (MBT).</p><p>This thesis is a feasibility study of the model-based testing concept and has been performed at the Tieto office in Karlstad. The feasibility study included the use and evaluation of the model-based testing tool Qtronic, developed by Conformiq, which automatically designs test cases given a model of the system under test as input. The experiments for the feasibility study were based on the incremental development of a test object, which was the client protocol module of a simplified model for an ATM (Automated Teller Machine) client-server system. The experiments were evaluated both individually and by comparison with the previous experiment since they were based on incremental development. For each experiment the different tasks in the process of testing using Qtronic were analyzed to document the experience gained as well as to identify strengths and weaknesses.</p><p>The project has shown the promise inherent in using a model-based testing approach. The application of model-based testing and the project results indicate that the approach should be further evaluated since experience will be crucial if the approach is to be adopted within Tieto’s organization.</p>
3

Model Based Testing for Non-Functional Requirements

Cherukuri, Vijaya Krishna, Gupta, Piyush January 2010 (has links)
Model Based Testing (MBT) is a new-age test automation technique traditionally used for Functional Black-Box Testing. Its capability of generating test cases by using model developed from the analysis of the abstract behavior of the System under Test is gaining popularity. Many commercial and open source MBT tools are available currently in market. But each one has its own specific way of modeling and test case generation mechanism that is suitable for varied types of systems. Ericsson, a telecommunication equipment provider company, is currently adapting Model Based Testing in some of its divisions for functional testing. Those divisions haven’t yet attempted adapting Model Based Testing for non-functional testing in a full-pledged manner. A comparative study between various MBT tools will help one of the Ericsson’s testing divisions to select the best tool for adapting to its existing test environment. This also helps in improving the quality of testing while reducing cost, time and effort. This thesis work helps Ericsson testing division to select such an effective MBT tool. Based on aspects such as functionality, flexibility, adaptability, performance etc., a comparative study is carried out on various available MBT tools and a few were selected among them: Qtronic, ModelJUnit and Elvior Motes.This thesis also helps to understand the usability of the selected tools for modeling of non-functional requirements using a new method. A brief idea of modeling the non-functional requirements is suggested in this thesis. A System under Test was identified and its functional behavior was modeled along with the non functional requirements in Qtronic and ModelJUnit. An experimental analysis, backed by observations of using the new proposed method indicates that the method is efficient enough to carry out modeling non-functional requirements along with modeling of functional requirements by identifying the appropriate approach.Model Based Testing (MBT) is a new-age test automation technique traditionally used for Functional Black-Box Testing. Its capability of generating test cases by using model developed from the analysis of the abstract behavior of the System under Test is gaining popularity. Many commercial and open source MBT tools are available currently in market. But each one has its own specific way of modeling and test case generation mechanism that is suitable for varied types of systems. Ericsson, a telecommunication equipment provider company, is currently adapting Model Based Testing in some of its divisions for functional testing. Those divisions haven’t yet attempted adapting Model Based Testing for non-functional testing in a full-pledged manner. A comparative study between various MBT tools will help one of the Ericsson’s testing divisions to select the best tool for adapting to its existing test environment. This also helps in improving the quality of testing while reducing cost, time and effort. This thesis work helps Ericsson testing division to select such an effective MBT tool. Based on aspects such as functionality, flexibility, adaptability, performance etc., a comparative study is carried out on various available MBT tools and a few were selected among them: Qtronic, ModelJUnit and Elvior Motes. This thesis also helps to understand the usability of the selected tools for modeling of non-functional requirements using a new method. A brief idea of modeling the non-functional requirements is suggested in this thesis. A System under Test was identified and its functional behavior was modeled along with the non functional requirements in Qtronic and ModelJUnit. An experimental analysis, backed by observations of using the new proposed method indicates that the method is efficient enough to carry out modeling non-functional requirements along with modeling of functional requirements by identifying the appropriate approach.
4

Evaluation of Model-Based Testing on a Base Station Controller

Trimmel, Stefan January 2008 (has links)
<p>This master thesis investigates how well suited the model-based testing process is for testing a new feature of a Base Station Controller. In model-based testing the tester designs a behavioral model of the system under test, or some part of the system. This model is then given to a test generation tool that will analyze the model and produce interesting test cases. These test cases can either be run on the system in an automatic or manual way depending on what type of setup there is.</p><p>In this report it is suggested that the behavioral model should be produced in as early a stage as possible and that it should be a collaboration between the test team and the design team.</p><p>The advantages with the model-based testing process are a better overview of the test cases, the test cases are always up to date, it helps in finding errors or contradictions in requirements and it performs closer collaboration between the test team and the design team. The disadvantages with model-based testing process are that it introduces more sources where an error can occur. The behavioral model can have errors, the layer between the model and the generated test cases can have errors and the layer between the test cases and the system under test can have errors. This report also indicates that the time needed for testing will be longer compared with manual testing.</p><p>During the pilot, when a part of a new feature was tested, of this master thesis a test generation tool called Qtronic was used. This tool solves a very challenging task which is generating test cases from a general behavioral model and with a good result. This tool provides many good things but it also has its shortages. One of the biggest shortages is the debugging of the model for finding errors. This step is very time consuming because it requires that a test case generation is performed on the whole model. When there is a fault in the model then this test generation can take very long time, before the tool decides that it is impossible to cover the model.</p><p>Under the circumstances that the Qtronic tool is improved on varies issues suggested in the thesis, one of the most important issues is to do something about the long debugging time needed, then the next step can be to use model-based testing in a larger evaluation project at BSC Design, Ericsson.</p>
5

Evaluation of Model-Based Testing on a Base Station Controller

Trimmel, Stefan January 2008 (has links)
This master thesis investigates how well suited the model-based testing process is for testing a new feature of a Base Station Controller. In model-based testing the tester designs a behavioral model of the system under test, or some part of the system. This model is then given to a test generation tool that will analyze the model and produce interesting test cases. These test cases can either be run on the system in an automatic or manual way depending on what type of setup there is. In this report it is suggested that the behavioral model should be produced in as early a stage as possible and that it should be a collaboration between the test team and the design team. The advantages with the model-based testing process are a better overview of the test cases, the test cases are always up to date, it helps in finding errors or contradictions in requirements and it performs closer collaboration between the test team and the design team. The disadvantages with model-based testing process are that it introduces more sources where an error can occur. The behavioral model can have errors, the layer between the model and the generated test cases can have errors and the layer between the test cases and the system under test can have errors. This report also indicates that the time needed for testing will be longer compared with manual testing. During the pilot, when a part of a new feature was tested, of this master thesis a test generation tool called Qtronic was used. This tool solves a very challenging task which is generating test cases from a general behavioral model and with a good result. This tool provides many good things but it also has its shortages. One of the biggest shortages is the debugging of the model for finding errors. This step is very time consuming because it requires that a test case generation is performed on the whole model. When there is a fault in the model then this test generation can take very long time, before the tool decides that it is impossible to cover the model. Under the circumstances that the Qtronic tool is improved on varies issues suggested in the thesis, one of the most important issues is to do something about the long debugging time needed, then the next step can be to use model-based testing in a larger evaluation project at BSC Design, Ericsson.
6

Model-Based Testing: An Evaluation

Nordholm, Johan January 2010 (has links)
Testing is a critical activity in the software development process in order to obtain systems of high quality. Tieto typically develops complex systems, which are currently tested through a large number of manually designed test cases. Recent development within software testing has resulted in methods and tools that can automate the test case design, the generation of test code and the test result evaluation based on a model of the system under test. This testing approach is called model-based testing (MBT). This thesis is a feasibility study of the model-based testing concept and has been performed at the Tieto office in Karlstad. The feasibility study included the use and evaluation of the model-based testing tool Qtronic, developed by Conformiq, which automatically designs test cases given a model of the system under test as input. The experiments for the feasibility study were based on the incremental development of a test object, which was the client protocol module of a simplified model for an ATM (Automated Teller Machine) client-server system. The experiments were evaluated both individually and by comparison with the previous experiment since they were based on incremental development. For each experiment the different tasks in the process of testing using Qtronic were analyzed to document the experience gained as well as to identify strengths and weaknesses. The project has shown the promise inherent in using a model-based testing approach. The application of model-based testing and the project results indicate that the approach should be further evaluated since experience will be crucial if the approach is to be adopted within Tieto’s organization.

Page generated in 0.0383 seconds