• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 8
  • 8
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on G-quadruplex nucleic acid structures in human cells

Biffi, Giulia January 2014 (has links)
No description available.
2

Studies into the formation, kinetics and mechanics of RNA G-quadruplexes

Zhang, Amy Yun Qing January 2013 (has links)
No description available.
3

A study of the role of G-Quadruplexes in the Human genome

Shahid, Ramla January 2011 (has links)
No description available.
4

Rational design and biological evaluation of G-quadruplex stabilizers as potential anticancer agents /

Li, Chun. January 1900 (has links)
Thesis (Ph. D.)--University of Idaho, 2006. / Abstract. "May 2006." Includes bibliographical references. Also available online in PDF format.
5

Interactions of novel luminescent platinum (II) complexes with DNA: targeting G-quadruplex, transcriptionfactors and topoisomerases

Wang, Ping, 王平 January 2010 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
6

DNA cleavage chemistry of pyridinium-based heterocyclic skipped aza-enediynes and targeting SV40 large T-antigen G-quadruplex DNA helicase activity by G-quadruplex interactive agents

Tuesuwan, Bodin, 1975- 29 August 2008 (has links)
Two diverse works regarding DNA-Drug Interaction are presented here. The first portion deals with covalent interactions between compounds that are derivatives of heterocyclic aza-enediynes and DNA (conventional Watson-Crick base paired double stranded DNA) and the second is related to non-covalent interactions of these compounds with G-quadruplex DNA. The aza-enediynes have been studied for their ability to undergo aza-variants of the Bergman and Myers cyclizations, and the potential role of the ensuing diradicals in DNA cleavage chemistry. The aza-Myers-Saito cyclization of aza-enyne allenes that are derived from base-promoted isomerization of skipped aza-enediynes has been recently reported. In the first part of the dissertation, the synthesis and DNA cleavage chemistry of a series of pyridinium skipped aza-enediynes (2-alkynyl-Npropargyl pyridine salts) are reported. Efficient DNA cleavage requires the presence of the skipped aza-enediyne functionality, and optimal DNA cleavage occurs at basic pH. An optimized analog containing a p-methoxyphenyl substituent was prepared. Studies with radiolabeled DNA duplexes reveal that this analog generates nonselective frank DNA strand breaks, via deoxyribosyl 4'-hydrogen atom abstraction, and also leads to oxidation of DNA guanine bases. This is the first report of enediynelike radical-based DNA cleavage by an agent designed to undergo an alternative diradical-generating cyclization. The second part is based upon the growing evidence for G-quadruplex DNA structures in genomic DNA and the presumed need to resolve these structures for replication. A prototypical replicative helicase - SV40 large T-antigen (T-ag), a multifunctional protein with duplex DNA helicase activity is shown to also unwind G-quadruplex DNA structures. A series of G-quadruplex-interactive agents, particularly perylene diimide derivatives, is explored for inhibition of T-ag duplex and G-quadruplex DNA unwinding activities, and it is revealed that certain perylene diimides are both potent and selective inhibitors of the G-quadruplex DNA helicase activity of T-ag. Surface plasmon resonance and fluorescence spectroscopic Gquadruplex DNA binding studies of these T-ag G-quadruplex helicase inhibitors have been carried out, demonstrating the importance of attributes in addition to binding affinity for G-quadruplex DNA that may be important for inhibition. The identification of potent and selective inhibitors of the G-quadruplex helicase activity of T-ag provides tools for probing the specific role of this activity in SV40 replication.
7

DNA cleavage chemistry of pyridinium-based heterocyclic skipped aza-enediynes and targeting SV40 large T-antigen G-quadruplex DNA helicase activity by G-quadruplex interactive agents

Tuesuwan, Bodin, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
8

Folding of the human telomere sequence DNA in non-aqueous and otherwise viscous solvents

Lannan, Ford 06 April 2012 (has links)
G-quadruplex forming human telomere sequence (HTS) DNA, has been widely studied due to the telomere's implied role in biological processes, including cellular ageing and cancer physiology. The goal of these previous efforts has been to characterize the physiologically relevant structures and their stability and dynamics in order to develop therapeutic applications. Unfortunately, understanding the biologically relevant form of the human telomere DNA is complicated by the fact that HTS-derived sequences are highly polymorphic. To further complicate the issue, recent investigations have demonstrated the ability of "cell-like" co-solvents to alter the preferred G-quadruplex fold of HTS DNA. However, the origins of G-quadruplex structure selection, the relative contributions of crowding versus dehydration, and the possible effects of co-solvents on kinetically determined folding pathways remain unresolved. Towards answering these questions, I investigated HTS DNA G-quadruplex in extreme anhydrous and high viscosity conditions utilizing a deep eutectic solvent (DES) consisting of choline chloride and urea. Herein I report that the water-free DES supports an extremely stable parallel stranded structure, consistent with observations that diminished water activity is the main cause of structural transitions to the "parallel-propeller" form. Furthermore, my research shows that the highly viscous nature of the solvent enables significant diffusion based control over HTS g-quadruplex folding rates and topology, fully consistent with Kramers rate theory. To the best of my knowledge, this is the first example of the kinetic exploration of G-quadruplex folding utilizing high friction solvent; the results of which display a decreased intramolecular folding rate of HTS DNA to a never before encountered time scale on the order of days at physiological temperature. Moreover, I have demonstrated that the folding pathway of a G-quadruplex can be altered with increased solvent friction. These discoveries are important because they highlight the need to consider the viscosity when exploring the dynamics of human telomeres specifically drug binding and folding of G-quadruplexes in vivo where cellular viscosity has been reported to be as high as 140cP. Lastly, it appears that tuning solvent viscosity could prove useful to the continued study of G-quadruplex dynamics.

Page generated in 0.0365 seconds