• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heavy flavour physics from lattice QCD

Hill, Victor John January 1989 (has links)
No description available.
2

Quantum chromodynamics and the precision phenomenology of heavy quarks

Lim, Matthew Alexander January 2019 (has links)
In this thesis we consider the phenomenology of the theory of strong interactions, Quantum Chromodynamics (QCD), with particular reference to the ongoing experimental program at the Large Hadron Collider in CERN. The current progress in precision measurement of Standard Model processes at the LHC experiments must be matched with corresponding precision in theoretical predictions, and to this end we present calculations at next-to-next-to-leading order in perturbation theory of observable quantities involving quarks and gluons, the strongly interacting particles of the SM. Such calculations form the most important class of corrections to observables and are vital if we are to untangle signals of New Physics from LHC data. We consider in particular the amplitudes for five parton interactions at 1- and 2-loop order and present full (in the 1-loop case) and partial (in the 2-loop case) analytic results in terms of rational functions of kinematic invariants multiplying a basis of master integrals. We address the problem of the solution of a system of integration-by-parts identities for Feynman integrals and demonstrate how some current difficulties may be overcome. We consider also the properties of the top quark, and present the NNLO, real-virtual contributions to the calculation of its decay rate. The results are presented as helicity amplitudes so that the full behaviour of the top spin is retained. These amplitudes constitute a necessary ingredient in the complete calculation of top quark pair production and decay at NNLO which will be an important theoretical input to many experimental analyses. Turning to a more phenomenological study, we consider the extraction of two important SM parameters, the top mass and the strong coupling constant, from measurements of top pair production at the ATLAS and CMS experiments. We compare with NNLO theory predictions and use a least-squares method to extract the values of the parameters simultaneously. We find best fit values of the parameters which are compatible with previous extractions performed using top data with the current world averages published by the Particle Data Group. We consider the issue of PDF choice and the circumstances in which a heavy quark can be considered a constituent of the proton. In particular, we look at the production of a Higgs boson in association with bottom quarks in four and five flavour schemes, in which the b may or may not be included in the initial state. We show that theoretical predictions in both schemes are well-motivated and appropriate in different scenarios, and moreover that results in the schemes are consistent provided a judicious choice of the renormalisation and factorisation scales is made. We suggest a typical scale choice motivated by considerations of consistency and find it to be somewhat lower than the typical hard scale of the process.
3

Electromagnetic properties of baryons from lattice QCD

Boinepalli, Sharada January 2006 (has links)
Electromagnetic properties of the octet and decuplet baryons are calculated in quenched QCD on a 20 ³ x40 lattice with a lattice spacing of 0.128 fm using the fat - link irrelevant clover ( FLIC ) fermion action. FLIC fermions enable simulations to be performed efficiently at quark masses as low as 300 MeV. By combining FLIC fermions with an improved conserved vector current we ensure that discretization errors occur only at Ο ( α ² ) while maintaining current conservation. Magnetic moments, charge radii and magnetic radii are extracted from the electric and magnetic form factors for each individual quark sector. From these the corresponding baryon properties are constructed. Our results for the octet baryons are compared with the predictions of Quenched Chiral Perturbation Theory ( Q χ PT ) and experimental values where available. Results for the charge radii and magnetic moments of the octet baryons are in accord with the predictions of the Q χ PT, suggesting that the sum of higher order terms makes only a small contribution to the chiral expansion. The regime where chiral physics dominates remains to be explored. We establish the non - analytic behavior of the charge radii and magnetic moment in the case of octet baryons. The neutron charge radius suggests that the chiral regime is still far away. We establish substantial environment sensitivity in the quark behavior in the low mass region. We establish that the u and d quarks make substantial and important contribution to the magnetic moment of the Λ contradicting the predictions of the Simple Quark Model. We present the E0 and M1 form factors of the decuplet baryons and the charge radii and magnetic moments. We compare the decuplet baryon results with the lattice calculation of charge radii and magnetic moments of octet baryons. We establish that the environment sensitivity is far less pronounced in the case of the decuplet baryons compared to that in the octet baryons. A surprising result is that the charge radii of the decuplet baryons are generally smaller than that of the octet baryons. Magnetic moment of the Δ + shows a turn over in the low quark mass region, making it smaller than the proton magnetic moment. This is consistent with the expectations of the Quenched Chiral Perturbation Theory. A similar turn over is also noticed in the magnetic moment of the ∑ * [superscript 0], but not for Ξ * where only kaon loops can appear in Quenched QCD. We present results for the higher order moments of the decuplet baryons, i.e., the electric quadrupole moment E2 and the magnetic octupole moment M3. With these results we provide the first conclusive analysis which shows that decuplet baryons are deformed. The electric quadrupole moment of the The electric quadrupole moment of the Ω ‾ baryon is postive when the negative charge factor is included, and is equal to 0.014 ± 0.0005 fm ², indicating an oblate shape. / Thesis (Ph.D.)--School of Chemistry and Physics, 2006.
4

Potencial de quarks pesados com input de teorias de gauge na rede / Heavy-quarkonium potential with input from lattice gauge theory

Serenone, Willian Matioli 17 July 2014 (has links)
Nesta dissertação nós revisamos aspectos gerais de teorias de gauge, os princípios da formulação de rede da cromodinâmica quântica (QCD) e algumas propriedades de quarkônios pesados, i.e. estados ligados de um quark pesado e seu antiquark. Como um exemplo de simulações de Monte Carlo de modelos de rede, apresentamos aplicações nos casos do oscilador harmônico e teorias de gauge SU(2). Nós estudamos o efeito de incorporar o propagador de gluon de simulações na rede em um modelo de potencial para a descrição do quarkônio, no caso do botômomio e do charmônio. Nós usamos em ambos os casos uma abordagem numérica para calcular as massas dos estados de quarkônio. O espectro resultante é comparado em ambos os casos com cálculos usando o potencial de Coulomb mais linear (ou potencial Cornell). / In this dissertation we review general aspects of gauge theories, the principles of the lattice formulation of quantum chromodynamics (QCD) and some properties of heavy quarkonia, i.e. bound states of a heavy quark and its antiquark. As an illustration of Monte Carlo simulations of lattice models, we present applications in the case of the harmonic oscillator and SU(2) gauge theory. We study the effect of incorporating the gluon propagator from lattice simulations into a potential model for the description of quarkonium, in the case of bottomonium and charmonium. We use a numerical approach to evaluate masses of quarkonium states. The resulting spectrum is compared in both cases to calculations using the Coulomb plus linear (or Cornell) potential.
5

Potencial de quarks pesados com input de teorias de gauge na rede / Heavy-quarkonium potential with input from lattice gauge theory

Willian Matioli Serenone 17 July 2014 (has links)
Nesta dissertação nós revisamos aspectos gerais de teorias de gauge, os princípios da formulação de rede da cromodinâmica quântica (QCD) e algumas propriedades de quarkônios pesados, i.e. estados ligados de um quark pesado e seu antiquark. Como um exemplo de simulações de Monte Carlo de modelos de rede, apresentamos aplicações nos casos do oscilador harmônico e teorias de gauge SU(2). Nós estudamos o efeito de incorporar o propagador de gluon de simulações na rede em um modelo de potencial para a descrição do quarkônio, no caso do botômomio e do charmônio. Nós usamos em ambos os casos uma abordagem numérica para calcular as massas dos estados de quarkônio. O espectro resultante é comparado em ambos os casos com cálculos usando o potencial de Coulomb mais linear (ou potencial Cornell). / In this dissertation we review general aspects of gauge theories, the principles of the lattice formulation of quantum chromodynamics (QCD) and some properties of heavy quarkonia, i.e. bound states of a heavy quark and its antiquark. As an illustration of Monte Carlo simulations of lattice models, we present applications in the case of the harmonic oscillator and SU(2) gauge theory. We study the effect of incorporating the gluon propagator from lattice simulations into a potential model for the description of quarkonium, in the case of bottomonium and charmonium. We use a numerical approach to evaluate masses of quarkonium states. The resulting spectrum is compared in both cases to calculations using the Coulomb plus linear (or Cornell) potential.
6

Model Studies Of The Hot And Dense Strongly Interacting Matter

Chatterjee, Sandeep 07 1900 (has links) (PDF)
Ultra-relativisitic heavy ion collisions produce quark gluon plasma-a hot and dense soup of deconfined quarks and gluons akin to the early universe. We study two models in the context of these collisions namely, Polyakov Quark Meson Model (PQM) and Hadron Resonance Gas Model (HRGM).The PQM Model provides us with a simple and intuitive understanding of the QCD equation of state and thermodynamics at non zero temperature and baryon density while the HRGM is the principle model to analyse the hadron yields measured in these experiments across the entire range of beam energies. We study the effect of including the commonly neglected fermionic vacuum fluctuations to the (2+1) flavor PQM model. The conventional PQM model suffers from a rapid phase transition contrary to what is found through lattice simulations. Addition of the vacuum term tames the rapid transition and significantly improves the model’s agreement to lattice data. We further investigate the role of the vacuum term on the phase diagram. The smoothening effect of the vacuum term persists even at non zero . Depending on the value of the mass of the sigma meson, including the vacuum term results in either pushing the critical end point into higher values of the chemical potential or excluding the possibility of a critical end point altogether. We compute the fluctuations(correlations) of conserved charges up to sixth(fourth) order. Comparison is made with lattice data wherever available and overall good qualitative agreement is found, more so for the case of the normalised susceptibilities. The model predictions for the ratio of susceptibilities approach to that of an ideal gas of hadrons as in HRGM at low temperatures while at high temperature the values are close to that of an ideal gas of massless quarks. We examine the stability of HRGMs by extending them to take care of undiscovered resonances through the Hagedorn formula. We find that the influence of unknown resonances on thermodynamics is large but bounded. We model the decays of resonances and investigate the ratios of particle yields in heavy-ion collisions. We find that extending these models do not have much effect on hydrodynamics but the hadron yield ratios show better agreement with experiment. In principle HRGMs are internally consistent up to a temperature higher than the cross over temperature in QCD; but by examining quark number susceptibilities we find that their region of applicability seems to end even below the QCD cross over.
7

Search of new physics through flavor physics observables / Recherche de la nouvelle physique à travers les observables de la physique de la saveur

Sumensari, Olcyr 27 September 2017 (has links)
La recherche indirecte des effets de la physique au-delà du Modèle Standard à travers les processus de la saveur est complémentaire aux efforts au LHC pour observer directement la nouvelle physique. Dans cette thèse nous discutons plusieurs scénarios au-delà du Modèle Standard (a) en utilisant une approche basée sur les théories de champs effective et (b) en considérant des extensions explicites du Modèle Standard, à savoir les modèles à deux doublets de Higgs et les scénarios postulant l'existence des bosons leptoquarks scalaires à basse énergie. En particulier, nous discutons le phénomène de la brisure de l'universalité des couplages leptoniques dans les désintégrations basées sur les transitions b → sℓℓ et b → cτν, et la possibilité de chercher les signatures de la violation de la saveur leptonique à travers les modes de désintégration similaires. Une proposition pour tester la présence d'un boson pseudoscalaire léger à travers les désintégrations des quarkonia est aussi présentée. / Indirect searches of physics beyond the Standard Model through flavor physics processes at low energies are complementary to the ongoing efforts at the LHC to observe the New Physic phenomena directly. In this thesis we discuss several scenarios of physics beyond the Standard Model by (a) reusing the effective field theory approach and (b) by considering explicit extensions of the Standard Model, namely the two-Higgs doublet models and the scenarios involving the low energy scalar leptoquark states. Particular emphasis is devoted to the issue of the lepton flavor universality violation in the exclusive decays based on b → sℓℓ and b → cτν, and to the possibility of searching for signs of lepton flavor violation through similar decay modes. A proposal for testing the presence of the light CP-odd Higgs through quarkonia decays is also made.

Page generated in 0.0638 seconds