• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 114
  • 114
  • 43
  • 25
  • 17
  • 16
  • 15
  • 15
  • 13
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

LINEARITY VERSUS COMPLETE POSITIVITY OF THE EVOLUTION OF OPEN QUANTUM SYSTEMS

Ceballos, Russell R. 01 May 2014 (has links)
The title may be a bit misleading. Perhaps, "On the Complete Positivity of Reduced Quantum Dynamics," would be a more fitting title. Determining whether or not completely positive (CP) maps are required to describe open system quantum dynamics is an extremely important issue concerning the fundamental mathematical foundations of QM, as well as many other areas of physics. it had been typically believed that only CP maps actually describe the dynamical evolution of open quantum systems, however there has been speculation as to whether this is a strict constraint on the mathematical and physical structure of stochastic quantum dynamical maps. The objective of this thesis is to demonstrate that given a particular unitary operator, an initial system state, a final system state, and the dimension of the environment state, there exists no CP map with a composite system-environment, product initial state that is compatible with the given constraints on the reduced quantum dynamics of the system under investigation.
22

Some aspects of perturbation theory applied to atoms and small molecules

Hibbert, Alan January 1967 (has links)
No description available.
23

Numerical treatment of the Liouville-von Neumann equation for quantum spin dynamics

Mazzi, Giacomo January 2010 (has links)
This thesis is concerned with the design of numerical methods for quantum simulation and the development of improved models for quantum relaxation. Analysis is presented for the treatment of quantum systems using the density matrix formalism. This approach has been developed from the early days of quantum mechanics as a tool to describe from a statistical point of view a large number of identical quantum ensembles. Traditional methods are well established and reliable, but they perform poorly for practical simulation as the system size is scaled up. Ad hoc schemes for nuclear spin dynamics appearing in the literature can be shown to fail in certain situations. The challenge is therefore to identify efficient reduction methods for the quantum system which are also based on a rigorous foundation. The method presented in the thesis, for the time–independent Hamiltonian case, combines a quantum density matrix formalism with a procedure based on Chebyshev polynomials; application of the method to Nuclear Magnetic Resonance (NMR) spectroscopy is considered, and it is shown that the new technique outperforms existing alternatives in term of computational costs. The case of a time–dependent Hamiltonian in NMR simulation is studied as well and some splitting methods are presented. To the author’s knowledge this is the first time such methods have been applied within the NMR framework, and the numerical results show a better error–to–cost rate than traditional methods. In a separate strand of research, formulations for open quantum systems are studied and new dynamical systems approaches are considered for this problem. Motivations This thesis work is mainly focused on nuclear spin dynamics. Nuclear spin dynamics constitutes the basis for NMR, which is a very powerful spectroscopy technique that exploits the interaction between nuclear spins and magnetic fields. The same technique is used to reveal the presence of hydrogen atoms in the blood for Magnetic Resonance Imaging (MRI). Within this framework the role of simulations is extremely important, as it provides a benchmark for studies of new materials, and the development of new magnetic fields. The main computational issue is that with current software for NMR simulation it is extremely expensive to deal with systems made of more than few (7–10) spins. There is therefore a strong need to develop new algorithms capable of simulating larger systems. In recent years NMR simulations have been found to be one of the most favorable candidates for quantum computing. There are two reasons for this: nuclear quantum states maintain extremely long coherences, and it is possible to attain a very strong control on the quantum state via the application of sequences of pulses. In order to develop a proper quantum computer it is fundamental to understand how the entangled states lose coherence and relax back to equilibrium by means of external interactions. This process is described as relaxation in an open quantum system. The theory for such systems has been available for 50 years but there are still substantial limitations in the two main approaches. There are also relatively few numerical approaches for the simulation of such systems, for this reason it is important to develop numerical alternatives for the description of open quantum systems. Thesis Outline The thesis is organized as follow: the first two chapters provide background material to familiarize the reader with fundamental concepts of both quantum mechanics and nuclear spin dynamics; in this part of the thesis no new results are presented. The first chapter introduces the concept of quantum systems and the mathematical environment with which we describe those systems. We also present the main equations we need to solve to determine the dynamics of a quantum system in a statistical framework. In the second chapter we introduce the nuclear spin system, that is the physical system that has been the main reference frame in this work, for both tests and practical applications of the new algorithms. We describe how nuclear spin systems are at the basis of very important applications like NMR spectroscopy and MRI. We present in some detail the physical features of the NMR technique and the equations we need to solve to describe the dynamics of a spin system; we also focus on the relevance of numerical simulations for these systems, and consequently which must be the interest in developing new algorithms, and the major obstacles which must be overcome. In the third chapter we investigate the numerical challenges that arise in simulation of quantum systems, we describe some of the methods that have been developed in the literature, focusing on the performances and the computational costs of them, setting the new developments of this thesis in the proper research frame. We discuss one of the major issues: the evaluation of the matrix exponential. We also present the analysis we have done of a recent method called Zero Track Elimination (ZTE) that has been developed specifically for NMR simulations. This analysis shows the limitations of this method but also gives a mathematical explanation of why–and in which cases–it works. In the fourth chapter we present the main result of the thesis, the development of a new method that directly evaluates the expectation values for a quantum simulation via a different application of the well known Chebyshev expansion. We have proved that this new method can provide an excellent boost in terms of performance, with computational costs that can be reduced by a factor ten in common cases. (The results of this chapter and the new method have been presented in international conferences and recently they have been submitted for publication). We also present some attempts we have made in the application of splitting methods for the evolution of the system in a time dependent environment. To our knowledge this is the first time splitting methods have been used for NMR simulations. The results of this approach are as follows: for a particular splitting technique combined with a Lanczos iteration method it is possible to speed up the calculation by a third if compared with a Lanczos type method whilst keeping the error below a critical threshold. This last approach is still a work in progress especially in terms of developing clever ways to split the Hamiltonian. The last chapter of this thesis deals with simulation of quantum systems interacting with an external environment. After presenting the main theoretical approaches for the description of such systems we then survey several the techniques that are currently used for the numerical implementation of such theories. As a work in progress we present a considerably different new approach we have been developing aiming to overcome some of the issues that arise when treating this kind of system within usual frameworks. This is somewhat speculative work that gives rise to some new directions in the development of a numerical description for open quantum systems. We also present some numerical results. (The main core of this chapter has been presented in international conferences).
24

Properties of quasinormal modes in open systems.

January 1995 (has links)
by Tong Shiu Sing Dominic. / Parallel title in Chinese characters. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 236-241). / Acknowledgements --- p.iv / Abstract --- p.v / Chapter 1 --- Open Systems and Quasinormal Modes --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.1.1 --- Non-Hermitian Systems --- p.1 / Chapter 1.1.2 --- Optical Cavities as Open Systems --- p.3 / Chapter 1.1.3 --- Outline of this Thesis --- p.6 / Chapter 1.2 --- Simple Models of Open Systems --- p.10 / Chapter 1.3 --- Contributions of the Author --- p.14 / Chapter 2 --- Completeness and Orthogonality --- p.16 / Chapter 2.1 --- Introduction --- p.16 / Chapter 2.2 --- Green's Function of the Open System --- p.19 / Chapter 2.3 --- High Frequency Behaviour of the Green's Function --- p.24 / Chapter 2.4 --- Completeness of Quasinormal Modes --- p.29 / Chapter 2. 5 --- Method of Projection --- p.31 / Chapter 2.5.1 --- Problems with the Usual Method of Projection --- p.31 / Chapter 2.5.2 --- Modified Method of Projection --- p.33 / Chapter 2.6 --- Uniqueness of Representation --- p.38 / Chapter 2.7 --- Definition of Inner Product and Quasi-Stationary States --- p.39 / Chapter 2.7.1 --- Orthogonal Relation of Quasinormal Modes --- p.39 / Chapter 2.7.2 --- Definition of Hilbert Space and State Vectors --- p.41 / Chapter 2.8 --- Hermitian Limits --- p.43 / Chapter 2.9 --- Numerical Examples --- p.45 / Chapter 3 --- Time-Independent Perturbation --- p.58 / Chapter 3.1 --- Introduction --- p.58 / Chapter 3.2 --- Formalism --- p.60 / Chapter 3.2.1 --- Expansion of the Perturbed Quasi-Stationary States --- p.60 / Chapter 3.2.2 --- Formal Solution --- p.62 / Chapter 3.2.3 --- Perturbative Series --- p.66 / Chapter 3.3 --- Diagrammatic Perturbation --- p.70 / Chapter 3.3.1 --- Series Representation of the Green's Function --- p.70 / Chapter 3.3.2 --- Eigenfrequencies --- p.73 / Chapter 3.3.3 --- Eigenfunctions --- p.75 / Chapter 3.4 --- Numerical Examples --- p.77 / Chapter 4 --- Method of Diagonization --- p.81 / Chapter 4.1 --- Introduction --- p.81 / Chapter 4.2 --- Formalism --- p.82 / Chapter 4.2.1 --- Matrix Equation with Non-unique Solution --- p.82 / Chapter 4.2.2 --- Matrix Equation with a Unique Solution --- p.88 / Chapter 4.3 --- Numerical Examples --- p.91 / Chapter 5 --- Evolution of the Open System --- p.97 / Chapter 5.1 --- Introduction --- p.97 / Chapter 5.2 --- Evolution with Arbitrary Initial Conditions --- p.99 / Chapter 5.3 --- Evolution with the Outgoing Plane Wave Condition --- p.106 / Chapter 5.3.1 --- Evolution Inside the Cavity --- p.106 / Chapter 5.3.2 --- Evolution Outside the Cavity --- p.110 / Chapter 5.4 --- Physical Implications --- p.112 / Chapter 6 --- Time-Dependent Perturbation --- p.114 / Chapter 6.1 --- Introduction --- p.114 / Chapter 6.2 --- Inhomogeneous Wave Equation --- p.117 / Chapter 6.3 --- Perturbative Scheme --- p.120 / Chapter 6.4 --- Energy Changes due to the Perturbation --- p.128 / Chapter 6.5 --- Numerical Examples --- p.131 / Chapter 7 --- Adiabatic Approximation --- p.150 / Chapter 7.1 --- Introduction --- p.150 / Chapter 7.2 --- The Effect of a Varying Refractive Index --- p.153 / Chapter 7.3 --- Adiabatic Expansion --- p.156 / Chapter 7.4 --- Numerical Examples --- p.167 / Chapter 8 --- Generalization of the Formalism --- p.176 / Chapter 8. 1 --- Introduction --- p.176 / Chapter 8.2 --- Generalization of the Orthogonal Relation --- p.180 / Chapter 8.3 --- Evolution with the Outgong Wave Condition --- p.183 / Chapter 8.4 --- Uniform Convergence of the Series Representation --- p.193 / Chapter 8.5 --- Uniqueness of Representation --- p.200 / Chapter 8.6 --- Generalization of Standard Calculations --- p.202 / Chapter 8.6.1 --- Time-Independent Perturbation --- p.203 / Chapter 8.6.2 --- Method of Diagonization --- p.206 / Chapter 8.6.3 --- Remarks on Dynamical Calculations --- p.208 / Appendix A --- p.209 / Appendix B --- p.213 / Appendix C --- p.225 / Appendix D --- p.231 / Appendix E --- p.234 / References --- p.236
25

Properties of strange stars. / 奇異星的特性 / Properties of strange stars. / Qi yi xing de te xing

January 2003 (has links)
Wong Ka Wah = 奇異星的特性 / 黃嘉華. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 98-101). / Text in English; abstracts in English and Chinese. / Wong Ka Wah = Qi yi xing de te xing / Huang Jiahua. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- History of Compact Stars --- p.1 / Chapter 1.2 --- The Proposal of Strange Quark Stars --- p.2 / Chapter 1.3 --- Outline of the Thesis --- p.3 / Chapter 2 --- Cold Equation of State from Perturbative QCD --- p.6 / Chapter 2.1 --- Description of Strange Quark Matter --- p.7 / Chapter 2.2 --- MIT Bag Model --- p.8 / Chapter 2.3 --- Perturbative QCD --- p.10 / Chapter 2.4 --- Comparison with MIT Bag Model --- p.11 / Chapter 3 --- Static Structure of Strange Stars --- p.16 / Chapter 3.1 --- Static Equilibrium --- p.16 / Chapter 3.2 --- Models --- p.18 / Chapter 3.3 --- Results of Global Properties and Discussions --- p.18 / Chapter 4 --- Stability of Strange Quark Matter --- p.25 / Chapter 4.1 --- Absolute Stable Condition --- p.25 / Chapter 4.2 --- Weak Stable Condition --- p.26 / Chapter 4.3 --- Stability Condition Compared to Neutron Stars --- p.27 / Chapter 4.4 --- Conclusion --- p.28 / Chapter 5 --- Effect of Massive Strange Quarks --- p.31 / Chapter 5.1 --- Numerical Analysis of the Effect of Strange Quark Mass on the EOS --- p.33 / Chapter 5.2 --- Structure of Strange Stars with Strange Quark Mass --- p.37 / Chapter 5.3 --- Conclusion --- p.38 / Chapter 6 --- QCD Phase Transition in a Compact Star --- p.46 / Chapter 6.1 --- Cooling Properties --- p.47 / Chapter 6.1.1 --- Heat capacity of quark stars --- p.49 / Chapter 6.1.2 --- Luminosity of quark stars --- p.50 / Chapter 6.1.3 --- Microphysics of the neutron star cooling --- p.54 / Chapter 6.2 --- Handling of the Phase Transition --- p.56 / Chapter 6.3 --- The Models --- p.59 / Chapter 6.4 --- Results --- p.60 / Chapter 6.4.1 --- Method 1 --- p.61 / Chapter 6.4.2 --- Method 2 --- p.66 / Chapter 6.5 --- Discussion and Conclusion --- p.66 / Chapter 7 --- Formation of a Strange Star --- p.73 / Chapter 7.1 --- Formalism of the Problem --- p.73 / Chapter 7.2 --- Lagrangian Hydrodynamics --- p.74 / Chapter 7.3 --- Hot Equation of State --- p.75 / Chapter 7.3.1 --- Nuclear Matter EOS --- p.75 / Chapter 7.3.2 --- Quark Matter EOS --- p.77 / Chapter 7.3.3 --- Mixed Phase --- p.78 / Chapter 7.4 --- Initial Models --- p.78 / Chapter 7.5 --- Results --- p.80 / Chapter 7.6 --- Discussion and Conclusion --- p.81 / Chapter 8 --- Conclusion --- p.95 / Bibliography --- p.98 / Chapter A --- Solving the EOS --- p.102 / Chapter B --- Solving C from Eq. (7.10) --- p.105
26

Méthodes de dynamique quantique ultrarapide basées sur la propagation de trajectoires / Trajectory-based methods for the study of ultrafast quantum dynamics

Cruz Rodriguez, Lidice 11 December 2018 (has links)
Dans cette thèse, différentes méthodes de dynamique quantique basées sur la propagation de trajectoires sont développées. La première approche consiste en une développer global des champs hydrodynamiques sur une base de polynômes de Chebyshev. Ce schéma est utilisé pour étudier la dynamique vibrationnelle unidimensionnelle de paquets d'ondes dans des potentiels harmoniques et anharmoniques. Par la suite, une méthodologie différente est développée, qui, à partir d'un paramétrage précédemment proposé pour la densité quantique, permet de construire des potentiels d'interaction effectifs entre les pseudo-particules représentant la densité. Dans le cadre de cette approche, plusieurs problèmes de modélisation sont étudiés et des effets quantiques importants sont décrits, tels que l'énergie de point zéro, l'effet tunnel, la diffusion et la réflexion sur une barrière. La même approximation est utilisée pour l'étude de l'ionisation des atomes par laser. Dans une troisième approche, un potentiel quantique approximatif à plusieurs corps est dérivé pour décrire des matrices d'argon et de krypton contenant une impureté de sodium. Il est obtenu en proposant un ansatz approprié pour la fonction d'onde de l'état fondamental du solide. Le potentiel est utilisé dans les simulations de dynamique moléculaire pour obtenir les spectres d'absorption de l'atome de Na isolé dans les matrices cryogéniques. / In this thesis different trajectory-based methods for the study of quantum mechanical phenomena are developed. The first approach is based on a global expansion of the hydrodynamic fields in Chebyshev polynomials. The scheme is used for the study of one-dimensional vibrational dynamics of bound wave packets in harmonic and anharmonic potentials. Furthermore, a different methodology is developed, which, starting from a parametrization previously proposed for the density, allows the construction of effective interaction potentials between the pseudo-particles representing the density. Within this approach several model problems are studied and important quantum mechanical effects such as, zero point energy, tunneling, barrier scattering and over barrier reflection are founded to be correctly described by the ensemble of interacting trajectories. The same approximation is used for study the laser-driven atom ionization. A third approach considered in this work consists in the derivation of an approximate many-body quantum potential for cryogenic Ar and Kr matrices with an embedded Na impurity. To this end, a suitable ansatz for the ground state wave function of the solid is proposed. This allows to construct an approximate quantum potential which is employed in molecular dynamics simulations to obtain the absorption spectra of the Na impurity isolated in the rare gas matrix.
27

B meson semileptonic form factors using unquenched lattice QCD

Gulez, Emel, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 112-116).
28

Quantum Dynamics Simulations Using the Standard Matching Pursuit Gaussian Wavepacket Method : Practical Considerations

Källman, Erik January 2014 (has links)
In any quantum dynamics method that approximates wave functions as a linearly combined basis set, non-orthogonality can be is a problem. It has been proven in previous studies that, by using the most standard form of Matching Pursuit in combination with a Gaussian wave packet ansatz, exact quantum-mechanical correspondence can be obtained for particle tunneling in one and two dimensions. This study is an attempt to prove that this approach can be generally applicable to systems of arbitrary dimension propagating with an an-harmonic potential, and that adaptive initial state sampling can be used to make the method even more computationally efficient.
29

A study of tokamak energy and particle transport, based on modulated electron cyclotron resonance heating

Deliyanakis, Nicholas January 1989 (has links)
A dynamical technique for the study of tokamak energy and particle transport has been developed. The plasma in the medium-sized DITE tokamak was perturbed by the application of modulated electron cyclotron resonance heating, with wave-launching from the high-field side. These experiments were carried out with absorption at various distances from the plasma centre, over a range of densities. Energy transport through the electron channel was dominant, and the variations in electron temperature and density were measured using the soft X-ray, electron cyclotron emission and microwave interferometer diagnostics. Analysis in the frequency domain enabled the propagation of the thermal wave to be followed. The observed behaviour was generally indicative of diffusive propagation of the thermal perturbation. Further observations indicated a modulation of the horizontal plasma shifts, diffusive propagation to the edge and a low modulation level of line-averaged density. In some atypical cases, the observed behaviour was qualitatively different; this type of behaviour was accompanied by a pronounced sawtooth oscillation locked with the modulation. Two models have been employed for the interpretation of these results. The first model, based on the diffusive thermal transport of the perturbation, has led to results in good agreement with the experimental data. Values of the electron thermal diffusivity were deduced, in good agreement with those obtained from the alternative techniques of power balance analysis and sawtooth heat pulse propagation analysis; such agreement has not been universally obtained in similar experiments. The width of the absorption region has emerged as an important consideration in this analysis. A more complex model, including non-linear, coupled equations of particle and energy balance, has produced results in partial agreement with the experimental data, supporting, to some extent, the presence of coupled transport. It has been demonstrated how perturbation techniques can afford a useful means of testing transport models.
30

On a dynamical origin for fermion generations /

Bashford, James Donald. January 2003 (has links) (PDF)
Thesis (Ph.D.)--University of Adelaide, Dept. of Physics and Mathematical Physics, 2003. / "July 2003" Bibliography: leaves 101-107.

Page generated in 0.105 seconds