• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 22
  • 13
  • 8
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 156
  • 156
  • 156
  • 68
  • 54
  • 51
  • 51
  • 50
  • 28
  • 27
  • 27
  • 26
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

One-dimensional bosonization approach to higher dimensions

Zyuzin, Vladimir Alexandrovich 22 February 2013 (has links)
This dissertation is devoted to theoretical studies of strongly interacting one-dimensional and quasi one-dimensional electron systems. The properties of one-dimensional electron systems can be studied within the bosonization technique, which presents fermions as collective bosonic density excitations. The power of this approach is the ability to treat electron-electron interaction exactly in the low-energy limit. The approach predicts the failure of Fermi liquid and an absence of long-range order in one-dimensions. The low-energy description of one-dimensional interacting systems is called the Tomonaga-Luttinger liquid theory. For example, the edges of quantum Hall systems are one-dimensional and described by a chiral Tomonaga-Luttinger liquid. Another example is a quantum spin Hall system with helical edge states, which are also described by a Tomonaga-Luttinger liquid. In our first work, a study of magnetized edge states of quantum spin-Hall system is presented. A magnetic field dependent signature of such edges is obtained, which can be verified in a Coulomb drag experiment. The second part of the dissertation is devoted to quasi-one dimensional antiferromagnetic lattices. A spatially anisotropic lattice antiferromagnet can be viewed as an array of one dimensional spin chains coupled in a way to match the lattice symmetry. This allows to use the non-Abelian bosonization technique to describe the low-energy physics of spin chains and study the inter-chain interactions perturbatively. The work presented in the dissertation studies the effect of Dzyaloshinskii-Moriya interaction on the magnetic phase diagram of the spatially anisotropic kagome antiferromagnet. We predict a Dzyaloshinskii-Moriya interaction driven phase transition from Neel to Neel+dimer state. In the third work, a novel model of the fractional quantum Hall effect is given. Wave functions of two-dimensional electrons in strong and quantizing magnetic field are essentially one-dimensional. That invites one to use the one-dimensional phenomenological bosonization to describe the density fluctuations of the two-dimensional interacting electrons in magnetic field. Remarkably, the constructed trial bosonized fermion operator describing the electron states with a fixed Landau gauge momentum is effectively two-dimensional. / text
32

Quantum Hall effects in novel 2D electron systems : nontrivial Fermi surface topology and quantum Hall ferromagnetism

Li, Xiao, 1986- 16 February 2015 (has links)
In this thesis we discuss quantum Hall effects in bilayer graphene and other novel two-dimensional electron systems, focusing on the interplay between nontrivial Fermi surface topology and electron-electron interactions. In the first chapter I will give a brief introduction to some aspects of the quantum Hall effects. The second chapter discusses the physics in bilayer graphene in the absence of external magnetic fields. The first half discusses the band gap opening and trigonal warping effects in its bandstructure, and the second half focuses on the insulating ground state that results from electron-electron interactions. The third chapter discusses the single-particle Landau level structure in bilayer graphene. We will see that when both the band gap and trigonal warping effects are present, the highest Landau level in the valence band is three-fold degenerate at small magnetic fields. As the field increases, the three fold degeneracy is lifted and the Landau level structure gradually reduces to that in the absence of trigonal warping effects. At the end of the chapter we will demonstrate a formalism to map the momentum distribution of the single-particle Landau level structure. Such a mapping will give valuable information about the single-particle bandstructure. The fourth chapter deals with electron-electron interactions in the integer quantum Hall regime, where there is no fractional filling of the orbital degrees of freedom. In such a regime, the effect of electron-electron interactions often leads to spontaneous ordering of the internal degrees of freedom, such as spin, layer and valley. The first part of the chapter will establish the general formalism of Hartree-Fock theory in the quantum Hall regime, and then a specific theory for gapped bilayer graphene with trigonal warping effects is constructed. The resulting ground states are analyzed in the last part of the chapter. / text
33

Progress Towards the Quantum Limit: High and Low Frequency Measurements of Nanoscale Structures

Rideout, Joshua 02 March 2010 (has links)
In this thesis, I present the work performed towards a proposal to couple a piezoelectric, nanomechanical beam to a radio frequency single electron transistor (RF-SET). Lumped element RF circuit theory is applied to 50 kOhm single electron transistors acting as the resistor in an RLC circuit. It is shown that for the expected inductances and stray capacitances, at an operating frequency of 1.25 GHz, the RF-SET is expected to have a usable half-bandwidth of 175-200 MHz and a charge sensitivity on the order of 10^(−5) e/√Hz. A fabricated RF-SET device is cryogenically cooled and used to find experimental values of the stray capacitance. A heterostructure made of gallium arsenide and aluminum gallium arsenide from which piezoelectric beams can be made is designed to contain a 2-dimensional electron gas (2DEG). Quantum Hall effect samples are fabricated from the wafer, and magnetoresistance measurements for each sample are presented. It is shown that the 2DEG has a high electron concentration of about 8 × 10^11 cm−2 but a low mobility of about 3.5 × 10^4 cm^2/(V·s) for this type of heterostructure. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2010-03-01 22:55:56.427
34

Near infrared optical manipulation of a GaAs/AlGaAs quantum well in the quantum hall regime

Buset, Jonathan M. January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Physics. Title from title page of PDF (viewed 2008/12/04). Includes bibliographical references.
35

Charge relaxation, current distribution, and breakdown of the quantum Hall effect /

Tsemekhman, Vadim, January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [108]-114).
36

Properties of low-dimensional systems

Lapilli, Cintia Mariela, January 2006 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (May 2, 2007) Vita. Includes bibliographical references.
37

Une nouvelle génération d'étalons quantiques fondée sur l'effet Hall quantique / a new generation of quantum standard based on the quantum hall effect

Brun-Picard, Jérémy 07 December 2018 (has links)
Le futur Système International d'unités, fondé sur des constantes fondamentales, va permettre de profiter pleinement des étalons quantiques de résistance, de courant et de tension qui sont reliés à la constante de planck et à la charge élémentaire. Dans cette thèse, nous avons développé et étudié un étalon de résistance fondé sur l'effet Hall quantique (EHQ) dans du graphène obtenu par dépôt chimique en phase vapeur (propane/hydrogène) sur substrat de carbure de silicium. Nous avons réussi à montrer, pour la première fois, qu'un étalon de résistance en graphène pouvait fonctionner à des conditions expérimentales plus pratiques que son homologue en GaAs/AlGaAs, c'est-à-dire à des températures plus élevées (T⋍10 K), des champs magnétiques plus faibles (B ⋍ 3,5 T) et des courants de mesures plus importants (I⋍500 μA). Dans une optique de compréhension et d'amélioration, nous avons analysé la reproductibilité du processus de fabrication de barres de Hall, testé une méthode de modification de la densité électronique et étudié les mécanismes de dissipation en régime d'EHQ.Dans une seconde partie, nous avons démontré qu'il était possible de réaliser une source de courant quantique programmable et versatile, directement reliée à la charge élémentaire, en combinant les deux étalons quantiques de tension et de résistance dans un circuit quantique intégrant un comparateur cryogénique de courant. Des courants ont ainsi pu être générés dans une gamme allant de 1 μA jusqu'à 5 mA avec une incertitude relative jamais atteinte de 10⁻⁸. Nous avons également prouvé que cet étalon de courant, réalisant la nouvelle définition de l'ampère, pouvait être utilisé pour étalonner un ampèremètre. / The future International System of Units, based on fundamental constants, will allow to take full advantage of the quantum standards of resistance, current and voltage that are linked to the planck constant and the elementary charge only.In this thesis, we have developed and studied a resistance standard based on the quantum Hall effect in graphene obtained by chemical vapor deposition (propane/hydrogen) on silicon carbide substrate. For the first time we were able to show that a graphene resistance standard could operate at more practical experimental conditions than its counterpart in GaAs/AlGaAs, ie at higher temperatures (T⋍10 K), weaker magnetics fields (B ⋍ 3,5 T) and larger measurement currents (I⋍500 μA). From an understanding and improvement perspective, we have analyzed the fabrication process of the Hall bar and its reproducibility, tested a method to modify the electronic density, and investigated the quantum Hall effect dissipation mechanisms.In a second part, we have demonstrated that it was possible torealize a programmable and versatile quantum current source from the elementary charge, by combining the two quantum standards of voltage and resistance in a quantum circuit integrating a cryogenic current comparator. Currents were generated in the range from 1 μA to 5 mA, with a relative uncertainty never achieved before of 10⁻⁸. We have also showed that this current standard, realizing the new definition of the ampere, could be used to calibrate an ammeter.
38

Tunneling Conductance Characterization of a Quantum Dot in the Fractional Quantum Hall Regime

Willard, Douglas E. 01 January 2011 (has links)
This work represents a first-principles calculation of the electron tunneling current into quantum dots in the fractional quantum Hall effect regime. The system under consideration consists of an idealized Scanning Tunneling Microscope (STM) tip and a quantum dot with disk geometry and interacting electrons in a transverse magnetic field. Within the context of this model the tunneling current between the STM tip and the dot is examined for spin-polarized electrons at and around a filling factor of 1/3. The current expression is based on a second-quantized Hamiltonian in which electrons in the dot are interacting, confined, and restricted to the lowest Landau level, necessary to capture the physics of the fractional quantum Hall effect. The Hamiltonian includes simple approximations for the STM tip and the tip-dot tunneling. An exact analytic expression for the first-order tunneling current is derived using a Green's function approach. To calculate the tunneling current numerically the infinite Hilbert space of the dot is truncated to have a finite dimension within the lowest Landau level. This simplification is appropriate for a low temperature system in the fractional quantum Hall regime because of the finite size of the quantum dot and the large energy gap between Landau levels. The tunneling current is then solved in two steps. First, many-electron energy eigenstates are calculated from the truncated Hamiltonian by numerical diagonalization. This is carried out for varying numbers of electrons N. The energy eigenstates form a set of complete basis states of the system and are used in the expression for the tunneling current. In the second step, the chemical potential in the dot is chosen to select a desired number of electrons and the tunneling current evaluated. We have carried out this program for filling factors near 1=3 while modulating the system parameters of interest to determine functional dependencies.
39

Sub-nanosecond dynamics in low-dimensional systems

Armstrong-Brown, Alistair January 2007 (has links)
No description available.
40

Probing Quasihole and Edge Excitations of Atomic and Photonic Fractional Quantum Hall Systems

Macaluso, Elia 27 January 2020 (has links)
The discovery of the fractional quantum Hall effect for two-dimensional electron gases immersed in a strong orthogonal magnetic field represents a cornerstone of modern physics. The states responsible for the appearance of the fractional quantum Hall effect have been found to be part of a whole new class of phases of matter, characterized by an internal order with unprecedented properties and known as topological order. This fact opened up a completely new territory for physical studies, paving the way towards many of the current hot topics in physics, such as topological phases of matter, topological order and topological quantum computing. As it happens for most topologically-ordered phases, fractional quantum Hall states are breeding ground for the observation of many exotic physical phenomena. Important examples include the appearance of degenerate ground states when the system in placed on a space with non-trivial topology, the existence of chiral gapless edge excitations which unidirectionally propagate without suffering of back-scattering processes, and the possibility of hosting elementary excitations, known as quasiparticles and quasiholes, carrying fractional charge and anyonic statistics. Even though for years since their discovery fractional quantum Hall states have been studied only in electronic systems, the recent advances made in the domains of quantum simulators and artificial gauge fields opened the possibility to realize bosonic analogs of these states in platforms based on ultracold atoms and photons. Reaching the appropriate conditions for the simulation of the fractional quantum Hall effect with neutral particles (such as atoms and photons) has required decades of both theoretical and experimental efforts and passed through the implementation of many topological models at the single-particle level. However, we strongly believe that the stage is set finally and that bosonic fractional quantum Hall states will be realized soon in different set-ups. Motivated by this fact, we dedicate this Thesis to the study of the edge and quasihole excitations of bosonic fractional quantum Hall states with the goal of guiding near future experiments towards exciting discoveries such as the observation of anyons. In the first part of the Thesis we focus our attention on the behavior of the edge excitations of the bosonic $ u=1/2$ Laughlin state (a paradigmatic wave function for the fractional quantum Hall effect) in the presence of cylindrically symmetric hard-wall confining potentials. With respect to electronic devices, atomic and photonic platforms offers indeed a more precise control on the external potential confining the systems, as confirmed by the recent realization of flat-bottomed traps for ultracold atoms and by the flexibility in designing optical cavities. At the same time, most of the theoretical works in this direction have considered harmonic confinements, for which the edge states have been found to display the standard chiral Luttinger liquid behavior, leaving the field open for our analysis of new physics beyond the Luttinger paradigm. In the second part we propose a novel method to probe the statistical properties of the quasihole excitations on top of a fractional quantum Hall state. As compared to the previous proposals, it does not rely on any form of interference and it has the undeniable advantage of requiring only the measurements of density-related observables. As we have already mentioned, although the existence of anyons have been theoretically predicted long time ago, it still lacks a clear-cut experimental evidence and this motivated people working with ultracold atoms and photons to push their systems into the fractional quantum Hall regime. However, while there exist plenty of proposals for the detection of anyons in solid-state systems (mostly based on interferometric schemes in which currents are injected into the system and anyons travel along its edges), in the present literature the number of detection schemes applicable in ultracold atomic and/or photonic set-ups is much smaller and they are typically as demanding as those proposed in the electronic context. Finally, in the last part of the Thesis we move to the lattice counterparts of the fractional quantum Hall states, the so-called fractional Chern insulators. Still with the purpose of paving the way for future experimental studies with quantum simulators, we focus our attention of the simplest bosonic version of these states and, in particular, on the properties of its quasihole excitations. Although this topic has already been the subject of intense studies, most of the previous works were limited either to system sizes which are too small to host anyonic excitations, or to unphysical conditions, such as periodic geometries and non-local Hamiltonians. Our study investigates for the first time the properties of genuine quasihole excitations in experimentally relevant situations.

Page generated in 0.0696 seconds