• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 16
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 72
  • 72
  • 18
  • 16
  • 16
  • 15
  • 14
  • 13
  • 12
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Quantum information processing using the power-of-SWAP

Guha Majumdar, Mrittunjoy January 2019 (has links)
This project is a comprehensive investigation into the application of the exchange interaction, particularly with the realization of the SWAP^1/n quantum operator, in quantum information processing. We study the generation, characterization and application of entanglement in such systems. Given the non-commutativity of neighbouring SWAP^1/n gates, the mathematical study of combinations of these gates is an interesting avenue of research that we have explored, though due to the exponential scaling of the complexity of the problem with the number of qubits in the system, numerical techniques, though good for few-qubit systems, are found to be inefficient for this research problem when we look at systems with higher number of qubits. Since the group of SWAP^1/n operators is found to be isomorphic to the symmetric group Sn, we employ group-theoretic methods to find the relevant invariant subspaces and associated vector-states. Some interesting patterns of states are found including onedimensional invariant subspaces spanned by W-states and the Hamming-weight preserving symmetry of the vectors spanning the various invariant subspaces. We also devise new ways of characterizing entanglement and approach the separability problem by looking at permutation symmetries of subsystems of quantum states. This idea is found to form a bridge with the entanglement characterization tool of Peres-Horodecki's Partial Positive Transpose (PPT), for mixed quantum states. We also look at quantum information taskoriented 'distance' measures of entanglement, besides devising a new entanglement witness in the 'engle'. In terms of applications, we define five different formalisms for quantum computing: the circuit-based model, the encoded qubit model, the cluster-state model, functional quantum computation and the qudit-based model. Later in the thesis, we explore the idea of quantum computing based on decoherence-free subspaces. We also investigate ways of applying the SWAP^1/n in entanglement swapping for quantum repeaters, quantum communication protocols and quantum memory.
22

Synergistic photon absorption enhancement in nanostructured molecular assemblies

Gao, Ting-fong 30 July 2012 (has links)
Molecular photoabsorption enhancement under ambient solar radiations can improve efficiency substantially in renewable energy production. Here, we explore the theoretical basis and experimental evidences that nanostructured molecular assemblies exhibit an unprecedented property of synergistic photon absorption enhancement. The molecular mechanism of this enhancement phenomenon originates from the combined effect of the photon-molecule interaction and the electronic energy transfer between two adjacent molecular assemblies. For a natural system, the synergistic photon absorption enhancement factor of green algae (Chlorella vulgaris) in vivo at 632.8 nm was determined to be 103. This enhanced photon absorption process in nanostructured molecular assemblies opens a doorway to create entangled double excitons by incoherent solar radiations.
23

No Metaphysics within Physics?

Miller, Elizabeth Louise January 2014 (has links)
This dissertation has three parts. In "Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience," I defend David Lewis's metaphysical doctrine of Humean supervenience, and traditional metaphysical reductionism more generally, against an alleged holistic threat encapsulated in the non-separability argument from quantum entanglement. I argue that, contrary to popular belief, realism about quantum mechanics is compatible with Humean reductionism. / Philosophy
24

Computational Methods for the Measurement of Entanglement in Condensed Matter Systems

Kallin, Ann Berlinsky January 2014 (has links)
At the interface of quantum information and condensed matter physics, the study of entanglement in quantum many-body systems requires a new toolset which combines concepts from each. This thesis introduces a set of computational methods to study phases and phase transitions in lattice models of quantum systems, using the Renyi entropies as a means of quantifying entanglement. The scaling of entanglement entropy can give valuable insight into the phase of a condensed matter system. It can be used to detect exotic types of phases, to pinpoint transitions between phases, and can give us universal information about a system. The first approach in this thesis is a technique to measure entanglement in finite size lattice systems using zero-temperature quantum Monte Carlo simulations. The algorithm is developed, implemented, and used to explore anomalous entanglement scaling terms in the spin-1/2 Heisenberg antiferromagnet. In the second part of this thesis, a new and complementary numerical technique is introduced to study entanglement not just in finite size systems, but as we approach the thermodynamic limit. This “numerical linked-cluster expansion” is used to study two different systems at their quantum critical points — continuous phase transitions occurring at zero temperature, at which these systems exhibit universal properties. Remarkably, these universal properties can be reflected in the scaling of entanglement. Entanglement offers a new perspective on condensed matter systems, one which takes us closer to genuinely understanding what goes on in these materials at the quantum mechanical level. This thesis demonstrates the first steps in developing an extensive list of computational tools that can be used to study entanglement over a wide range of interacting quantum many-body systems. With the ever increasing computational power available, it may be only a matter of time before these tools are used to create a comprehensive framework for the characterization of condensed matter phases and phase transitions.
25

Quantum Information and Quantum Computation with Continuous Variables

Christian Weedbrook Unknown Date (has links)
The idea to assimilate classical information theory with quantum mechanics resulted in the creation of a new field in physics known as quantum information. One of the first papers in this new field occurred in the early 1970's when Stephen Wiesner wrote the seminal manuscript titled: "Conjugate Coding". However, its importance wasn't imme- diately recognized and wasn't published until 1983. The 1980's and 1990's saw a number of important papers published in quantum information leading to the subfields of quantum cryptography, quantum teleportation, quantum entanglement, distinguishability of quantum states, and quantum cloning. It was also during the 1980's, that a new model of computing, known as quantum computation, was beginning to emerge. It offered the possibility of solving certain problems faster than a classical computer by exploiting various properties of quantum mechanics. Research in this field was undoubtedly stimulated by a well known talk given by Richard Feynman in 1981 at MIT on quantum simulations. Both quantum information and quantum computation were initially developed with quantum discrete variables in mind. However, over the course of the last decade, there has been a significant increase in using quantum continuous variables. This thesis will focus on the topic of quantum information and quantum computation using continuous variables. Specifically, we will theoretically consider the cloning of continuous-variable entanglement, the distinguishability of Gaussian states, new continuous-variable quantum cryptography protocols and finally, the universality of quantum computation using continuous-variable cluster states.
26

Quantum Information and Quantum Computation with Continuous Variables

Christian Weedbrook Unknown Date (has links)
The idea to assimilate classical information theory with quantum mechanics resulted in the creation of a new field in physics known as quantum information. One of the first papers in this new field occurred in the early 1970's when Stephen Wiesner wrote the seminal manuscript titled: "Conjugate Coding". However, its importance wasn't imme- diately recognized and wasn't published until 1983. The 1980's and 1990's saw a number of important papers published in quantum information leading to the subfields of quantum cryptography, quantum teleportation, quantum entanglement, distinguishability of quantum states, and quantum cloning. It was also during the 1980's, that a new model of computing, known as quantum computation, was beginning to emerge. It offered the possibility of solving certain problems faster than a classical computer by exploiting various properties of quantum mechanics. Research in this field was undoubtedly stimulated by a well known talk given by Richard Feynman in 1981 at MIT on quantum simulations. Both quantum information and quantum computation were initially developed with quantum discrete variables in mind. However, over the course of the last decade, there has been a significant increase in using quantum continuous variables. This thesis will focus on the topic of quantum information and quantum computation using continuous variables. Specifically, we will theoretically consider the cloning of continuous-variable entanglement, the distinguishability of Gaussian states, new continuous-variable quantum cryptography protocols and finally, the universality of quantum computation using continuous-variable cluster states.
27

Propriétés hors équilibre des jonctions Josephson multi-terminales et topologiques / Non-equilibrium properties of topological and multi terminal Josephson junctions

Badiane, Mouhamadou Driss 04 October 2013 (has links)
Ce manuscrit de thèse aborde les propriétés de transport hors-équilibre des systèmes mésoscopiques supra-conducteurs. Cette étude se décline en deux volets : i) la signature des fermions de Majorana dans les jonctionsJosephson topologiques, et ii) les corrélations du courant dans les jonctions Josephson tri-terminales.Les fermions de Majorana apparaissent aux bords d’un supraconducteur topologique. Lorsque deux supra-conducteurs topologiques sont reliés pour former une jonction Josephson, les états de Majorana d’énergie nullede part et d’autre de jonction forment un état lié d’Andreev. Puisque cet état porteur du supercourant est4π-périodique vis-à-vis de la différence de phase supraconductrice, il a été spéculé un effet Josephson fraction-naire en présence d’une tension de polarisation. On montre qu’une vitesse de phase finie induit un couplagedynamique entre l’état lié et le continuum des états au dessus de l’amplitude du gap supraconducteur. Ce cou-plage intrinsèque constitue un mécanisme inévitable qui altère l’effet Josephson fractionnaire. On discute, enfonction des paramètres du circuit, les signatures expérimentales pertinentes de l’effet Josephson fractionnaire :l’effet pair-impair dans les marches de Shapiro et l’émergence d’un pic à la fréquence fractionnaire dans la den-sité spectrale du bruit en courant. D’autres manifestations de ces états d’énergie nulle dans la caractéristiquecourant-tension, sous l’amplitude du paramètre d’ordre supraconducteur, sont également exposés.Dans un second temps sont abordées les fluctuations du courant dissipatif dans les jonctions Josephsontri-terminales. On montre que, les corrélations croisées du courant peuvent être positives et amplifiées dans unrégime cohérent. Ces résultats ouvrent la possibilité à des études plus élaborées sur l’enchevêtrement quantiquedans ces systèmes. / This PhD thesis manuscript deals with the non equilibrium transport properties of superconducting meso-scopic systems. This study declines in two shutters : i) signatures of Majorana fermions in topological Josephsonjunctions and ii) current-current correlations in three-terminal Josephson junctions.Majorana fermions appears at the boundaries of topological superconductors. When two topological su-perconductors are connected to form a Josephson junction, the zero-energy Majorana bound states localizedon either side of the junction form an Andreev bound state. As this current carrying state is 4π-periodic inthe superconducting phase difference, it was speculated that, at finite dc bias voltage, the junction exhibits afractional Josephson effect. We show that any finite phase velocity induces a dynamic coupling between thebound state and the continuum of states above the superconducting gap amplitude. This intrinsic couplingprovides an unavoidable mechanism that alters the fractional Josephson effect. We discuss, in terms of thecircuit parameters, signatures of the fractional Josephson effect that could be relevant for current experimen-tal investigations : the even-odd effect in Shapiro steps and the emergence of a peak at fractional Josephsonfrequency in the current noise spectrum. Furthermore, other manifestations of the Majorana bound states onthe subgap current-voltage characteristic are discussed.In a second step, we discuss the dissipative current fluctuations in three terminal Josephson junctions. Weshow that, current-current cross correlations can be positive and amplified in a coherent regime. This findingopens the possibility for further investigations on quantum entanglement in those systems
28

Manipulating frequency-entangled photons / Manipulation de photons intriqués en fréquence

Olislager, Laurent 19 December 2014 (has links)
Les pères fondateurs de la mécanique quantique exploraient les implications de leur théorie avec des "expériences de pensée". Les améliorations continuelles en matière de manipulation de systèmes quantiques individuels ont ouvert la voie à des recherches théoriques et expérimentales. C'est la base de l'information quantique: quand un contenu informationnel est associé à des transformations et mesures sur des systèmes quantiques, cela offre un nouveau paradigme à la théorie de l'information. Une des promesses de l'information quantique est la réalisation d'un internet quantique: des liaisons quantiques permettraient de partager des états quantiques entre les noeuds du réseau. Le contexte de notre travail est l'optique quantique expérimentale dans des fibres optiques aux longueurs d'onde des télécommunications, avec comme perspective des applications en communication quantique. Nous démontrons une nouvelle méthode pour manipuler des photons intriqués en énergie-temps, en utilisant des composants fibrés et optoélectroniques standard. Les photons produits par paires par une source de conversion paramétrique sont envoyés dans des modulateurs de phase électro-optiques indépendants, qui agissent comme des diviseurs de faisceau en fréquence. Nous utilisons ensuite des filtres fréquentiels et des détecteurs de photons uniques pour discriminer les fréquences des photons. Nos résultats expérimentaux incluent l'obtention d'interférences à deux photons robustes, à haute visibilité et à haute dimension, qui permettent la violation d'inégalités de Bell. Cela montre qu'une telle "intrication en bins fréquentiels" est une plate-forme intéressante pour la communication Quantique. / The founding fathers of quantum mechanics explored the implications of their theory with "gedanken experiments". Continuous improvement of the experimental manipulation of individual quantum systems has opened the way to exciting research, both on blackboards and in laboratories. lt is the basis for quantum information processing : when an information content is associated with transformations and measurements of quantum systems, it offers a new paradigm, full of potentialities, to information theory. One of the promises of quantum information is the realization of a quantum internet: quantum communication links would allow to share quantum states between the nodes of the network.Our work lies in the context of experimental quantum optics in optical fibers at telecommunication wavelengths, in view of quantum communication applications. We demonstrate a new method for manipulating photons entangled in their energy-time degree of freedom, by using standard fiber-optic and optoelectronic components. The photon pairs produced by a parametric down-conversion source are sent through independent electro­optic phase modulators, which act as high-dimensional frequency beam splitters. We then use frequency filters and single-photon detectors to discriminate the frequencies of the photons. Our experimental results include robust, high-visibility and high-dimensional two­photon interference patterns allowing Bell inequality violations. This shows that such a "frequency -bin entanglement" provides an interesting platform for quantum communication.
29

Influência da compressão do campo eletromagnético no emaranhamento atômico para processos de 1 e 2 fótons / Influence of the electromagnetic field squeezing in atomic entanglement for 1 and 2 photons processes

Meneguele, Hugo Leonardo de Oliveira 30 August 2007 (has links)
Orientador: Jose Antonio Roversi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-09T22:35:41Z (GMT). No. of bitstreams: 1 Meneguele_HugoLeonardodeOliveira_M.pdf: 4373941 bytes, checksum: 4efca6ce7c6517706ffe61c248036b0c (MD5) Previous issue date: 2007 / Resumo: Neste trabalho, estudamos o emaranhamento quântico entre dois átomos, que surge quando ambos interagem com o mesmo campo em uma cavidade. A interação é descrita pelo Modelo de Jaynes-Cummings para processos de 1 e 2 f ótons, sendo analisadas as diferenças na dinâmica de emaran-hamento devidas aos processos distintos. A cavidade é preparada em estados comprimidos de 1 e 2 modos, sendo analisada a influência da compressão inicial no emaranhamento atômico obtido, em termos do máximo emaranhamento possível para cada situação, bem como a robustez e persistência do emaranhamento gerado em relação à compressão. Encontramos que a compressão de um modo é, de modo geral, danosa ao emaranhamento, embora também provoque um efeito de deslocamento nos instantes de interção que gera ganhos para instantes de baixo emaranhamento. Processos de 2 f ótons em campos comprimidos de 1 modo fazem com que o emaranhamento se torne mais robusto, sendo mais persistente contra os efeitos redutores da compressão. Para campos comprimidos de 2 modos, a compressão aumenta o emaranhamento entre os modos da cavidade e reduz entre os átomos; estes dois efeitos concorrentes podem ser combinados de forma a gerarem um ganho de emaranhamento atômico para tempos de interação específicos / Abstract: In this work, we studied the quantum entanglement between two atoms, arising from their interactions with the same cavity field. This interaction follows the Jaynes-Cummings Model for 1 and 2 photons processes, being analized the differences in entanglement dynamics due to distinct processes. The cavity is prepared in 1-and 2-modes squeezed states, being analized the initial squeezing¿s influence in the obtained atomic entanglement, in terms of the highest possible entanglement for each situation, as well as the robustness and persistence of the generated entanglement in relation to squeezing. We found that 1 mode squeezing is, generally speaking, harmful to entanglement, although it also causes a displacement effect in the interaction times, which in turn generates gain for low-entanglement moments. 2-photons processes in 1- mode squeezed fields makes more robust entanglement, which is more persistent against reductive effects by squeezing. For 2- modes squeezed fields, squeezing enhances entanglement between the cavity modes and reduces entanglement between atoms; these two competing effects can be combined as to generate a gain in atomic entanglement for specific interaction times / Mestrado / Física / Mestre em Física
30

Quebra de simetria e transição de fase quântica em alguns modelos de acoplamento spin-boson / Symmetry breaking and quantum phase transition in spin-boson models

Chagas, Emiliano Augusto 14 January 2008 (has links)
Orientador: Kyoko Furuya / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-10T14:44:05Z (GMT). No. of bitstreams: 1 Chagas_EmilianoAugusto_M.pdf: 5122954 bytes, checksum: a280b293a78cd819e62e73692ae4b99f (MD5) Previous issue date: 2008 / Resumo: Neste trabalho estudamos o efeito sobre a Transição de Fase Quântica (TFQ) do Modelo de Dicke Integrável devido a adição de um pequeno termo (fixo) de interação de dois bósons na Aproximação de Onda Girante (RWA). Mostramos que, embora a descontinuidade na derivada da energia do Estado Fundamental (EF) como função do parâmetro principal de interação ('lambda') continue presente para qualquer valor de spin (J), o emaranhamento entre spin e boson sofre uma mudança bastante significativa devido à perturbação, especialmente no limite de grandes valores de J (N = 2J >> 1). Este comportamento novo é entendido através do estudo conjunto de duas quantidades como função de 'lambda' (interação) e J (tamanho do spin), a saber: (i) o ponto fixo e vizinhanças da dinâmica no espaço de fase de spin do análogo clássico do modelo e (ii) a Função de Wigner de spin EF do sistema nas vizinhanças do máximo / Abstract: In this work we study the effect on the Quantum Phase Transition (QPT) of the integrable version of the Dicke model when we add a small (fixed) two boson interaction in the Rotating Wave Approximation (RWA). We show that, although the discontinuity of the Ground State (GS) energy derivative as a function of the principal parameter of interaction ('lambda') remains present for any value of spin (J), the entanglement between the spin and boson undergoes a significant change due the perturbation, specially in the limit of large values of J (N = 2J >> 1). This new behavior has been understood through the combined study of two quantities as a function of 'lambda' (interaction) and J (size of the spin): (i) the fixed point and its vicinity in the dynamics of the spin phase space o the model¿s classical analogue, and (ii) the behavior of the maxima of the spin Wigner function and its vicinity for the GS of the system / Mestrado / Física / Mestre em Física

Page generated in 0.0915 seconds