Spelling suggestions: "subject:"kuantum point"" "subject:"auantum point""
1 |
Quantum point contact : A theoretical studyGustafsson, Alexander January 2010 (has links)
<p>Experiments shows that the conductance of a quantum point contact is quantized in steps of 2e²/h, where e is the charge of the electron and h is Planck’s constant, and thereby Ohm’s law is not valid for nanostructures. By using the approximation method finite difference, the transmission for one-dimensional contacts and one- and two-dimensional potentials are investigated. In the case of two-dimensional contacts and a two-dimensional potential the Green’s function method is used. It turns out that if electrons are treated as waves, the transmission and the conductance just differ by the constant 2e²/h, which in this thesis is interpreted numerically in Matlab by using the Green’s function method.</p>
|
2 |
Quantum point contact : A theoretical studyGustafsson, Alexander January 2010 (has links)
Experiments shows that the conductance of a quantum point contact is quantized in steps of 2e²/h, where e is the charge of the electron and h is Planck’s constant, and thereby Ohm’s law is not valid for nanostructures. By using the approximation method finite difference, the transmission for one-dimensional contacts and one- and two-dimensional potentials are investigated. In the case of two-dimensional contacts and a two-dimensional potential the Green’s function method is used. It turns out that if electrons are treated as waves, the transmission and the conductance just differ by the constant 2e²/h, which in this thesis is interpreted numerically in Matlab by using the Green’s function method.
|
3 |
Electron correlations in mesoscopic systems.Sloggett, Clare, Physics, Faculty of Science, UNSW January 2007 (has links)
This thesis deals with electron correlation effects within low-dimensional, mesoscopic systems. We study phenomena within two different types of system in which correlations play an important role. The first involves the spectra and spin structure of small symmetric quantum dots, or "eartificial atoms"e. The second is the "e0.7 structure"e, a well-known but mysterious anomalous conductance plateau which occurs in the conductance profile of a quantum point contact. Artificial atoms are manufactured mesoscopic devices: quantum dots which resemble real atoms in that their symmetry gives them a "eshell structure"e. We examine two-dimensional circular artificial atoms numerically, using restricted and unrestricted Hartree-Fock simulation. We go beyond the mean-field approximation by direct calculation of second-order correlation terms; a method which works well for real atoms but to our knowledge has not been used before for quantum dots. We examine the spectra and spin structure of such dots and find, contrary to previous theoretical mean-field studies, that Hund's rule is not followed. We also find, in agreement with previous numerical studies, that the shell structure is fragile with respect to a simple elliptical deformation. The 0.7 structure appears in the conductance of a quantum point contact. The conductance through a ballistic quantum point contact is quantised in units of 2e^2/h. On the lowest conductance step, an anomalous narrow conductance plateau at about G = 0.7 x 2e^2/h is known to exist, which cannot be explained in the non-interacting picture. Based on suggestive numerical results, we model conductance through the lowest channel of a quantum point contact analytically. The model is based on the screening of the electron-electron interaction outside the QPC, and our observation that the wavefunctions at the Fermi level are peaked within the QPC. We use a kinetic equation approach, with perturbative account of electron-electron backscattering, to demonstrate that these simple features lead to the existence of a 0.7-like structure in the conductance. The behaviour of this structure reproduces experimentally observed features of the 0.7 structure, including the temperature dependence and the behaviour under applied in-plane magnetic fields.
|
4 |
Modeling of nanostructures with complex source and drainHakanen, Jani January 2004 (has links)
<p>In this thesis we report on calculations for open quantum mechanical and certain microwave systems. The models refer to a quantum point contact and an electron cavity. We model this open system with an imaginary potential as source and drain, and use the finite difference method to make our calculations. We report on general features of the model we have found, and compare our calculations with measurements made on microwave cavities.</p>
|
5 |
Modeling of nanostructures with complex source and drainHakanen, Jani January 2004 (has links)
In this thesis we report on calculations for open quantum mechanical and certain microwave systems. The models refer to a quantum point contact and an electron cavity. We model this open system with an imaginary potential as source and drain, and use the finite difference method to make our calculations. We report on general features of the model we have found, and compare our calculations with measurements made on microwave cavities.
|
6 |
Electron Correlations and Spin in Asymmetric GaAs Quantum Point Contacts and Signatures of Structural Transitions in Hall Effect of FeSeWu, Phillip M. January 2010 (has links)
<p>The 1D Wigner crystal is a long sought after strongly correlated quantum state. Here we present electronic transport data of asymmetric quantum point contacts (QPC) tuned to the spin-incoherent regime, which provides evidence for achieving the 1D Wigner state. Our result can be distinguished in several particularly noticeable ways. First, we utilize an asymmetric point contact geometry that is simple to fabricate and has not been studied previously. We are able to tune to the conductance anomalies simply by asymmetrically applying voltages to the gates. Second, we observe clear suppression of the first plateau and direct jumps to the second in these asymmetric QPCs at liquid helium temperatures (4.2 K). Such conductance behavior is indicative of Wigner crystal row formation.</p>
<p>This thesis suggests that the novel geometry and gating scheme allows for a novel way to search for strongly correlated electronic behavior in quasi-1D quantum wires. A key finding is the importance of asymmetric QPCs for observation of anomalous transport characteristics. We have observed a strongly developed e<super>2</super>/h feature under asymmetric voltage gating and zero applied magnetic field. Such a feature is attributed to enhanced spin energies in the system. We believe the asymmetric design allows for a relaxing of the 1D confinement so that a quasi-1D electron conformation develops, which in turn allows for various possible magnetic states. In addition, by optimally tuning the confinement potential, we observe an unexpected suppression of the 2e<super>2</super>/h plateau. This provides further evidence for unusual electron arrangements in the asymmetric quantum point contact.</p>
<p>I also discuss transport studies on the new FeSe superconductor. Our collaboration discovered the superconducting β-FeSe compound with a Tc approximately 8 K. The crystal lattice structure of β-FeSe is by far the simplest of the Fe superconductors. One of the most interesting observations regarding FeSe is that the crystal structure undergoes a structural transition at approximately 105 K from tetragonal to orthorhombic (or triclinic) symmetry. We believe this structural transition to be closely related to the origin of superconductivity in this class of materials.</p>
<p>Transport studies also seem to support this claim. From Hall effect measurements of bulk FeSe, we find that FeSe is likely a two band (electron and hole) superconductor, which suggests it is quite different from the cuprates, and that very unconventional superconducting mechanisms are at play. The temperature dependence of the Hall coefficient is measured, and found to rapidly increase below 105 K. This suggests the scattering time related to hole bands dominate the transport at low temperature. As there is no magnetic ordering observed at low temperature, we do not expect the scattering from random Fe magnetic impurities to play a significant role in the enhanced hole scattering times. Thus, we speculate that this change is related to the structural transition observed.</p> / Dissertation
|
7 |
Coherent and Dissipative Transport in Metallic Atomic-Size ContactsDai, Zhenting 15 November 2006 (has links)
Thin-film niobium mechanically controlled break junctions and resistively shunted niobium mechanically-controlled break junctions were developed and successfully microfabricated. Using these devices, high-stability atomic size contacts were routinely produced and investigated both in the normal and superconducting states. Investigations of the two-level conductance fluctuations in the smallest contacts allowed the calculation of their specific atomic structure. Embedding resistive shunts close to the superconducting atomic-sized junctions affected the coherence of the electronic transport. Finally, point contact spectroscopy measurements provide evidence of the interaction of conduction electrons with the mechanical degrees of freedom of the atomic-size niobium contacts.
|
8 |
Quasiparticle Tunneling and High Bias Breakdown in the Fractional Quantum Hall EffectDillard, Colin 24 September 2012 (has links)
The integer and fractional quantum Hall effects arise in two-dimensional electron systems subject to low temperature and high perpendicular magnetic field. The phenomenology of these two effects is rich and provides interesting insight into quantum physics. We present two experimental studies of phenomena in the fractional quantum Hall regime. The first examines the tunneling conductance of quasiparticles at filling factor 5/2. This state is of significant interest because it lies outside the traditional Jain hierarchy of fractional quantum Hall states and because it may be the first physical system found to exhibit non-abelian particle statistics. A quantum point contact is used to bring edge states on opposite sides of the system in proximity to each other, allowing quasiparticles to tunnel between the edge states. By annealing the gates forming the quantum point contact at different voltages we control the tunneling strength for fixed temperature and bias. We demonstrate a transition from strong to weak tunneling controlled in this manner. In the weak tunneling regime, the DC bias and temperature dependence of the tunneling conductance is fit to a theoretical form, resulting in values for the quasiparticle charge \(e*\) and the interaction parameter \(g\). The values of these parameters are used to help distinguish between proposed candidate states for the 5/2 wave function. Quantitative and qualitative results are most consistent with the abelian 331 state. Our second main focus is the breakdown of the fractional quantum Hall states at filling factors 4/3 and 5/3. Breakdown of integer and fractional quantum Hall states is known to occur when the Hall and longitudinal resistances deviate from their ideal values at nonzero critical currents. Although multiple studies of breakdown in the integer quantum Hall regime have been reported, corresponding results for the fractional regime are scarce. We observe breakdown over a range of integer states that is consistent with previous results. However, breakdown in the fractional regime is found to exhibit markedly different behavior. In particular, the magnitude of the critical current decreases with increased sample width. This behavior is opposite that observed for integer filling factors and does not seem to be explicable based on current theories of breakdown. / Physics
|
9 |
Growth of metallic nanowires by chemical etching and the use of microfluidics channels to produce quantum point contactsSoltani, Fatemeh 24 March 2010 (has links)
A self-terminated electrochemical method was used to fabricate microscopic-scale contacts between two Au electrodes in a microfluidic channel. The conductance of contacts varies in a stepwise fashion showing quantization near the integer multiples of the conductance quantum ( ). The mechanism works by a pressure-driven flow parallel to a pair of Au electrodes with a gap on the order of micron in an electrolyte of HCl. When applying a bias voltage between two electrodes, metal atoms are etched off the anode and dissolved into the electrolyte as metal ions, which are then deposited onto the cathode. Consequently, the gap decreases to the atomic scale and then completely closes as the two electrodes form a contact. The electrochemical fabrication approach introduces large variance in the formation and location of individual junctions. Understanding and controlling this process will enable the precise positioning of reproducible geometries into nano-electronic devices.
|
10 |
Electronic and Spin Correlations in Asymmetric Quantum Point ContactsZhang, Hao January 2014 (has links)
<p>A quantum point contact (QPC) is a quasi-one dimensional electron system, for which the conductance is quantized in unit of $2e^2/h$. This conductance quantization can be explained in a simple single particle picture, where the electron density of states cancels the electron velocity to a constant. However, two significant features in QPCs were discovered in the past two decades, which have drawn much attention: the 0.7 effect in the linear conductance and zero-bias-anomaly (ZBA) in the differential conductance. Neither of them can be explained by single particle pictures.</p><p>In this thesis, I will present several electron correlation effects discovered in asymmetric QPCs, as shown below:</p><p>The linear conductance of our asymmetric QPCs shows conductance resonances. The number of these resonances increases as the QPC channel length increases. The quantized conductance plateau is also modulated by tuning the gate voltage of the QPCs. These two features, observed in the linear conductance, are ascribed to the formation of quasi-bound states in the QPCs, which is further ascribed to the electron-correlation-induced barriers. </p><p>The differential conductance for long channel QPCs shows the zero-bias-anomaly for every other linear conductance resonance valley, suggesting a near even-odd behavior. This even-odd law can be interpreted within the electron-correlation-induced barrier picture, where the quasi-localized non-zero spin in the quasi-bound state (Kondo-like) couples to the Fermi sea in the lead. For a specific case, triple-peak structure is observed in the differential conductance curves, while the electron filling number is still even, suggesting a spin triplet formation at zero magnetic field.</p><p>Small differential conductance oscillations as a function of bias voltage were discovered and systematically studied in an asymmetric QPC sample. These oscillations are significantly suppressed in a low in-plane magnetic field, which is completely unexpected. The oscillations are washed out when the temperature is increased to 0.8K. Numerical simulation, based on the thermal smearing of the Fermi distribution, was performed to simulate the oscillation behavior at high temperatures, using the low temperature data as an input. This simulation agrees with the oscillations off zero-bias region, but does not agree with the temperature evolution of the structure near zero-bias. Based on the above oscillation characteristics, all simple single particle pictures were carefully considered, and then ruled out. After exhausting all these pictures, we think these small oscillations are related to novel electronic and spin correlations.</p> / Dissertation
|
Page generated in 0.067 seconds