• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum dot-based Entangled-Light Emitting Diodes (E-LED) for quantum relays

Varnava, Christiana January 2018 (has links)
Sources of entangled pairs of photons can be used for encoding signals in quantum-encrypted communications, allowing a sender, Alice, and a receiver, Bob, to exchange keys without the possibility of eavesdropping. In fact, any quantum information system would require single and entangled photons to serve as qubits. For this purpose, semiconductor quantum dots (QD) have been extensively studied for their ability to produce entangled light and function as single photon sources. The quality of such sources is evaluated based on three criteria: high efficiency, small multi-photon probability, and quantum indistinguishability. In this work, a simple quantum dot-based LED (E-LED) was used as a quantum light source for on-demand emission, indicating the potential for use as quantum information devices. Limitations of the device include the fine-structure splitting of the quantum dot excitons, their coherence lengths and charge carrier interactions in the structure. The quantum dot-based light emitting diode was initially shown to operate in pulsed mode under AC bias frequencies of up to several hundreds of MHz, without compromising the quality of emission. In a Hong-ou-Mandel interference type experiment, the quantum dot photons were shown to interfere with dissimilar photons from a laser, achieving high two-photon interference (TPI) visibilities. Quantum entanglement from a QD photon pair was also measured in pulsed mode, where the QD-based entangled-LED (E-LED) was electrically injected at a frequency of 203 MHz. After verifying indistinguishability and good entanglement properties from the QD photons under the above conditions, a quantum relay over 1km of fibre was demonstrated, using input qubits from a laser source. The average relay fidelity was high enough to allow for error correction for this BB84-type scheme. To improve the properties of the QD emission, an E-LED was developed based on droplet epitaxy (D-E) QDs, using a different QD growth technique. The relevant chapter outlines the process of QD growth and finally demonstration of quantum entanglement from an electrically injected diode, yielding improvements compared to previous E-LED devices. For the same reason, an alternative method of E-LED operation based on resonant two-photon excitation of the QD was explored. Analysis of Rabi oscillations in a quantum dot with a bound exciton state demonstrated coupling of the ground state and the biexciton state by the external oscillating field of a laser, therefore allowing the transition between the two states. The results include a considerable improvement in the coherence length of the QD emission, which is crucial for future quantum network applications. We believe that extending this research can find application in quantum cryptography and in realising the interface of a quantum network, based on semiconductor nanotechnology.
2

Telecom wavelength quantum devices

Felle, Martin Connor Patrick January 2017 (has links)
Semiconductor quantum dots (QDs) are well established as sub-Poissonian sources of entangled photon pairs. To improve the utility of a QD light source, it would be advantageous to extend their emission further into the near infrared, into the low absorption wavelength windows utilised in long-haul optical telecommunication. Initial experiments succeeded in interfering O-band (1260—1360 nm) photons from an InAs/GaAs QD with dissimilar photons from a laser, an important mechanism for quantum teleportation. Interference visibilities as high as 60 ± 6 % were recorded, surpassing the 50 % threshold imposed by classical electrodynamics. Later, polarisation-entanglement of a similar QD was observed, with pairs of telecom-wavelength photons from the radiative cascade of the biexciton state exhibiting fidelities of 92.0 ± 0.2 % to the Bell state. Subsequently, an O-band telecom-wavelength quantum relay was realised. Again using an InAs/GaAs QD device, this represents the first implementation of a sub-Poissonian telecom-wavelength quantum relay, to the best knowledge of the author. The relay proved capable of implementing the famous four-state BB84 protocol, with a mean teleportation fidelity as high as 94.5 ± 2.2 %, which would contribute 0.385 secure bits per teleported qubit. After characterisation by way of quantum process tomography, the performance of the relay was also evaluated to be capable of implementing a six-state QKD protocol. In an effort to further extend the emitted light from a QD into the telecom C-band (1530—1565 nm), alternative material systems were investigated. InAs QDs on a substrate of InP were shown to emit much more readily in the fibre-telecom O- and C-bands than their InAs/GaAs counterparts, largely due to the reduced lattice mismatch between the QD and substrate for InAs/InP (~3 %) compared to InAs/GaAs (~7 %). Additionally, to minimize the fine structure splitting (FSS) of the exciton level, which deteriorates the observed polarisation-entanglement, a new mode of dot growth was investigated. Known as droplet epitaxy (D-E), QDs grown in this mode showed a fourfold reduction in the FSS compared to dots grown in the Stranski-Krastanow mode. This improvement would allow observation of polarisation-entanglement in the telecom C-band. In subsequent work performed by colleagues at the Toshiba Cambridge Research Labs, these D-E QDs were embedded in a p-i-n doped optical cavity, processed with electrical contacts, and found to emit entangled pairs of photons under electrical excitation. The work of this thesis provides considerable technological advances to the field of entangled-light sources, that in the near future may allow for deterministic quantum repeaters operating at megahertz rates, and in the further future could facilitate the distribution of coherent multipartite states across a distributed quantum network.
3

Synchronisation toute optique d’un réseau de communication quantique / All-optical synchronization for quantum networking

Bin Ngah, Lufti Arif 11 December 2015 (has links)
Ce manuscrit expose le développement de ressources fondamentales pour les communications quantiques à longues distances basées sur les technologies des fibres optiques télécoms et des guides d'onde optiques non linéaires. Après une introduction générale sur les communications quantiques, cette thèse est structurée en trois parties principales. La première partie illustre le développement de deux sources pour la génération de paires de photons intriqués en polarisation et émis à une longueur d'onde télécom via conversion paramétrique spontanée (SPDC) dans des guides d'ondes non linéaires intégrés sur niobate de lithium périodiquement polarisé. Les sources s'appuient respectivement sur un accord de phase de type-II et un accord de phase de type-0 et sur des solutions de filtrage et d'interférométrie mises en place après le cristal non linéaire. Dans la seconde partie, sont discutées les réalisations de deux sources de photons uniques annoncés haut débit. La première s'appuie sur le multiplexage spatial sur puce de photons uniques annoncés. La seconde exploite le multiplexage temporel passif grâce à l'utilisation d'un laser télécom cadencé à 10 GHz. Enfin, nous présentons une approche tout-optique visant la synchronisation de sources distantes de paires de photons intriqués, agencées selon une architecture de type relais quantique distribué. Cette technique innovante repose sur l'utilisation d'un laser télécom impulsionnel en tant qu'horloge optique de référence. Cette horloge autorise la synchronisation de l'émission de paires de photons dans la bande C des télécoms en deux lieux distants. Des résultats préliminaires d'interférence à deux photons sont montrés et discutés. / This manuscript reports the development of fundamental resources for long distance quantum communication based on fibre telecom technology and non-linear optical waveguides. After a general introduction on quantum communication, the thesis is structured along three parts. The first part illustrates the development of two photonic polarization entanglement sources suitable for quantum networking. Both sources generate paired photons at telecom wavelength via spontaneous parametric down conversion (SPDC) in periodically poled lithium niobate waveguides (PPLN/W). They rely on type-II and type 0 phase matching, respectively. In the second part, two high quality heralded single photon sources are highlighted. The first one relies on on-chip generation and spatial multiplexing of heralded single photons towards achieving higher bit rates. The second one takes advantage of passive temporal multiplexing of a single SPDC process. Finally, an all-optical approach towards efficient and accurate synchronization of remote entangled photon pair sources within quantum relay architecture over long distances is presented. This particular synchronization technique highlights the use of ultra-fast picosecond pulsed telecom fiber laser, operating at 2.5 GHz repetition rate, acting as a master optical clock, enabling to accurately synchronize the emission of photon pairs in the telecom C-band of wavelengths at two remote locations. This innovative approach is applied for synchronizing two remote PLLN/W based sources operated at 2.5 GHz, and preliminary results on two-photon interference obtained with single photons coming from each source are shown and discussed.

Page generated in 0.1136 seconds