Spelling suggestions: "subject:"heralded single photon source"" "subject:"geraldes single photon source""
1 |
Single photon generation and quantum computing with integrated photonicsSpring, Justin Benjamin January 2014 (has links)
Photonics has consistently played an important role in the investigation of quantum-enhanced technologies and the corresponding study of fundamental quantum phenomena. The majority of these experiments have relied on the free space propagation of light between bulk optical components. This relatively simple and flexible approach often provides the fastest route to small proof-of-principle demonstrations. Unfortunately, such experiments occupy significant space, are not inherently phase stable, and can exhibit significant scattering loss which severely limits their use. Integrated photonics offers a scalable route to building larger quantum states of light by surmounting these barriers. In the first half of this thesis, we describe the operation of on-chip heralded sources of single photons. Loss plays a critical role in determining whether many quantum technologies have any hope of outperforming their classical analogues. Minimizing loss leads us to choose Spontaneous Four-Wave Mixing (SFWM) in a silica waveguide for our source design; silica exhibits extremely low scattering loss and emission can be efficiently coupled to the silica chips and fibers that are widely used in quantum optics experiments. We show there is a straightforward route to maximizing heralded photon purity by minimizing the spectral correlations between emitted photon pairs. Fabrication of identical sources on a large scale is demonstrated by a series of high-visibility interference experiments. This architecture offers a promising route to the construction of nonclassical states of higher photon number by operating many on-chip SFWM sources in parallel. In the second half, we detail one of the first proof-of-principle demonstrations of a new intermediate model of quantum computation called boson sampling. While likely less powerful than a universal quantum computer, boson sampling machines appear significantly easier to build and may allow the first convincing demonstration of a quantum-enhanced computation in the not-distant future. Boson sampling requires a large interferometric network which are challenging to build with bulk optics, we therefore perform our experiment on-chip. We model the effect of loss on our postselected experiment and implement a circuit characterization technique that accounts for this loss. Experimental imperfections, including higher-order emission from our photon pair sources and photon distinguishability, are modeled and found to explain the sampling error observed in our experiment.
|
2 |
Generation of heralded multi-photon parallel state for realizing a large-scale photonic quantum circuit / 大規模光量子回路の実現に向けた伝令付き多光子並列状態の生成に関する研究Kiyohara, Takayuki 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22448号 / 工博第4709号 / 新制||工||1735(附属図書館) / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 竹内 繁樹, 教授 白石 誠司, 准教授 浅野 卓 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
3 |
Synchronisation toute optique d’un réseau de communication quantique / All-optical synchronization for quantum networkingBin Ngah, Lufti Arif 11 December 2015 (has links)
Ce manuscrit expose le développement de ressources fondamentales pour les communications quantiques à longues distances basées sur les technologies des fibres optiques télécoms et des guides d'onde optiques non linéaires. Après une introduction générale sur les communications quantiques, cette thèse est structurée en trois parties principales. La première partie illustre le développement de deux sources pour la génération de paires de photons intriqués en polarisation et émis à une longueur d'onde télécom via conversion paramétrique spontanée (SPDC) dans des guides d'ondes non linéaires intégrés sur niobate de lithium périodiquement polarisé. Les sources s'appuient respectivement sur un accord de phase de type-II et un accord de phase de type-0 et sur des solutions de filtrage et d'interférométrie mises en place après le cristal non linéaire. Dans la seconde partie, sont discutées les réalisations de deux sources de photons uniques annoncés haut débit. La première s'appuie sur le multiplexage spatial sur puce de photons uniques annoncés. La seconde exploite le multiplexage temporel passif grâce à l'utilisation d'un laser télécom cadencé à 10 GHz. Enfin, nous présentons une approche tout-optique visant la synchronisation de sources distantes de paires de photons intriqués, agencées selon une architecture de type relais quantique distribué. Cette technique innovante repose sur l'utilisation d'un laser télécom impulsionnel en tant qu'horloge optique de référence. Cette horloge autorise la synchronisation de l'émission de paires de photons dans la bande C des télécoms en deux lieux distants. Des résultats préliminaires d'interférence à deux photons sont montrés et discutés. / This manuscript reports the development of fundamental resources for long distance quantum communication based on fibre telecom technology and non-linear optical waveguides. After a general introduction on quantum communication, the thesis is structured along three parts. The first part illustrates the development of two photonic polarization entanglement sources suitable for quantum networking. Both sources generate paired photons at telecom wavelength via spontaneous parametric down conversion (SPDC) in periodically poled lithium niobate waveguides (PPLN/W). They rely on type-II and type 0 phase matching, respectively. In the second part, two high quality heralded single photon sources are highlighted. The first one relies on on-chip generation and spatial multiplexing of heralded single photons towards achieving higher bit rates. The second one takes advantage of passive temporal multiplexing of a single SPDC process. Finally, an all-optical approach towards efficient and accurate synchronization of remote entangled photon pair sources within quantum relay architecture over long distances is presented. This particular synchronization technique highlights the use of ultra-fast picosecond pulsed telecom fiber laser, operating at 2.5 GHz repetition rate, acting as a master optical clock, enabling to accurately synchronize the emission of photon pairs in the telecom C-band of wavelengths at two remote locations. This innovative approach is applied for synchronizing two remote PLLN/W based sources operated at 2.5 GHz, and preliminary results on two-photon interference obtained with single photons coming from each source are shown and discussed.
|
Page generated in 0.4437 seconds