Spelling suggestions: "subject:"quantumdots"" "subject:"quantumdot""
211 |
CDSE Quantum Dots and Luminescent/Magnetic Particles for Biological ApplicationsWang, Desheng 21 May 2005 (has links)
CdSe semiconductor nanocrystals (quantum dots--QDs) with diameters ranging between 1.5 and 8 nm exhibit strong, tunable luminescence [1-5]. They have been widely investigated for their size-dependent optoelectronic properties [6], and for their potential use in optical devices [7], biological labels [8] and sensors [9]. Luminescent quantum dots (QDs) show higher photostability and narrower emission peaks compared to organic fluorophores [8]. The objective of my project was to apply QDs magnetic/luminescent nanoparticle as biological labels in cells. Luminescent CdSe QDs emit bright visible light with high quantum yield and sharp emission peak. The CdSe QDs were capped with a ZnS layer. This increased their emission efficiency and photostability due to the larger band gap of ZnS. The QDs were transferred from organic solvent (e.g. chloroform, hexane) to water by exchanging the capping group (Trioctylphosphine Oxide—TOPO) with mercaptoacetic acid. To develop a separation and detection tool for cells, we combined γ-Fe2O3 magnetic particles with CdSe/ZnS QDs in core-shell composite. The composite nanoparticles showed strong fluorescence emission and high water solubility. Different antibodies were attached to the particles through EDAC coupling. The antibody-coated particles were used to successfully separate and detect breast cancer cells in blood cells.
|
212 |
Luminescent Quantum Dot and Protein Composite Nanoparticles for Bioanalytical ApplicationsWicks, Arriel 14 May 2010 (has links)
The first project focused on the preparation, characterization, and application of dual emission quantum dot encoded mesoporous silica microparticles. The quantum dots were added in precisely controlled ratios and were stably encapsulated within the pores of the silica. Several experiments were performed to test the superior stability of the quantum dot-silica composites over dye-loaded silica particles. The composite particles exhibited very high fluorescence, were functionalized with antibodies, and were used as signal transducers for the detection of a protein expressed by breast cancer cells. The second project focused in more detail on the detection capabilities of the quantum dot-silica composites. Three different types of quantum dot-silica composites were prepared. Each type was loaded with a separate type of quantum dot with distinct emission wavelengths and was functionalized with separate antibodies for detection of three different breast cancer biomarkers. These three composite sensors were used together for the simultaneous detection of each of the breast cancer markers. The initial strategy utilized the direct detection method in which the antigen is nonspecifically adsorbed to a glass plate. An improved second strategy was more sensitive and used a capture antibody which was covalently bound to a glass plate to immobilize the antigen. The third project focused on the preparation and application of magnetic, fluorescent human serum albumin nanoparticle composites. A fluorescent drug analogue and iron oxide nanoparticles were encapsulated into 100 nm human serum albumin nanoparticles. The advantage of these composite particles is that they could be used as a theranostic tool which could target, detect, and treat diseased tissue in a single application. Release of the drug analogue from the nanocomposites was achieved by addition of proteolytic enzymes that are expressed or overexpressed in cancer cells. The temporal release of the fluorescent drug analogue was measured as a function of enzyme concentration. The amount of drug released was directly proportional to enzyme concentration.
|
213 |
Correlações fortes em nanoplasmônica / Strong correlations in nanoplasmonicsSobreira, Fernando Wellysson de Alencar 23 November 2016 (has links)
A plasmônica tem chamado atenção nos últimos anos como um candidato viável para substituir a indústria eletrônica, assim como interação dos plásmons com a matéria devido a suas propriedades exóticas. O confinamento destes plásmons de superfície em nanoestruturas metálicas fabricadas com técnicas de litografia óptica, eletrônica e de íons cada vez mais avançadas, abriu a possibilidade de desenvolver vários modelos de dispositivos ópticos que trabalham na região do visível. Além disso, o estudo da interação de plásmons poláritons de superfície com emissores quânticos nas proximidades de nanoestruturas metálicas permite manipular as propriedades tanto dos plásmons como dos emissores quânticos. Tanto a preparação como a análise de amostras em plasmônica necessitam de técnicas capazes de investigar sistemas em nanoescala. Neste trabalho, investigamos a interação de plásmon poláritons confinados numa superfície de ouro com átomos artificiais, i.e. os emissores quânticos são pontos quânticos numa matriz de InAs/GaAs. Para isso, empregamos a análise da interação dos plásmons confinados numa grade metálica, com dimensões características abaixo do comprimento de onda da luz utilizada, assim como um sistema simples composto por uma na camada de ouro capaz de confinar plásmons em duas dimensões. A análise da interação com os estados de energia dos éxcitons nos pontos quânticos foi feita empregando medidas de micro-fotoluminescência a 77K e medidas de tempo de vida. Nos sistemas compostos pelas grades metálicas, observamos que é possível manipular a relação do espectro de luminescência correspondente a cada estado de energia do éxciton. Já no sistema composto pelo filme metálico simples, foi possível modificar o tempo de vida do estado fundamental do éxciton apenas modificando o cap layer da camada de pontos quânticos. / Plasmonics has drawn attention in recent years as a viable candidate to replace the electronics industry, as well as the interaction of plasmons with matter due to its exotic properties. The confinement of these surface plasmons in metal nanostructures made of increasingly advanced optical, electronic and ionic lithography techniques, opened the possibility of developing various models of optical devices working in the visible spectrum. Moreover, the study of interaction of surface plasmon polaritons with quantum emitters nearby metallic nanostructures opens a path to manipulate the properties of both plasmons and the quantum emitters. Both the preparation and analysis of samples in plasmonics require techniques capable of investigating nanoscale systems. In this thesis, we investigate the interaction of plasmon polaritons confined to a golden metallic surface with artificial atoms, i.e. quantum emitters consisting of quantum dots in a matrix of InAs/GaAs. For this, we used the analysis of the interaction of plasmons confined in a metallic grating with characteristic dimensions below the wavelength of light used, as well as a simple system composed of a thin gold layer which can confine plasmons in two dimensions. The analysis of the interaction with the exciton energy states in quantum dots was made using micro-photoluminescence measurements at 77 K and lifetime measurements. In systems composed by metal gratings, we note that it is possible to manipulate the relationship of the corresponding luminescence spectrum for each exciton energy state. In the system composed of the simple metal lm, it was possible to modify the ground state lifetime of the exciton only modifying the cap layer of the quantum dot layer.
|
214 |
Caracterização elétrica de nanoestruturas semicondutoras / Electrical characterization of semiconductors nanostructuresVicaro, Klaus Orian, 1978- 12 February 2008 (has links)
Orientadores: Mônica Alonso Cotta, Peter Alexander Bleinroth Schulz / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-09-02T17:54:43Z (GMT). No. of bitstreams: 1
Vicaro_KlausOrian_D.pdf: 6412839 bytes, checksum: d994f5b0a67263a799df2b77a074f96b (MD5)
Previous issue date: 2008 / Resumo: Neste trabalho caracterizamos as propriedades elétricas de nanoestruturas semicondutoras de InAs/InP, principalmente quantum dots e quantum wires, obtidas pelo modo de crescimento Stranski-Krastanov com epitaxia por feixe químico (CBE). Medidas de topografia, de condutância elétrica e corrente-voltagem com resolução espacial foram realizadas nas estruturas crescidas utilizando microscopia de força atômica em modo condutivo (C-AFM) com ponta metalizada. Estruturas tipo mesa foram processadas nas amostras usadas em C-AFM e medidas elétricas a temperaturas mais baixas que 273 K foram adquiridas. Transporte por emissão termiônica tridimensional (não-homogêneo) foi observado entre a ponta condutora e as nanoestruturas de InAs. Isso sugere que as vizinhanças da nanoestrutura, formada pela wetting layer (WL), alteram a configuração da altura da barreira, tornando-a dependente da voltagem aplicada na junção metal-semicondutor. Por outro lado, a voltagem de limiar, definida como a voltagem necessária para obter a menor corrente elétrica detetável, varia com o tamanho e forma da nanoestrutura; ela está relacionada com o estado eletrônico da nanoestrutura e também com o gap eletrônico do semicondutor, que é menor nas nanoestruturas maiores. Condução elétrica por hopping e ruído telegráfico aleatório (RTN) foram observados a baixas temperaturas nos dispositivos fabricados via e-beam com dezenas ou centenas de nanoestruturas de InAs/InP. O transporte tipo hopping de Éfros-Shklovskii ocorre a temperaturas mais altas (> 70 K) e polarizações baixas onde a densidade de portadores no dispositivo é baixa e a interação coulombiana forte. Com o aumento da polarização o hopping muda para intervalo variável de Mott em sistemas 2D, e correlacionado com a dimensionalidade da WL ¿o canal de condução. O RTN aparece em temperaturas mais baixas (< 40 K) mas somente nos dispositivos contendo nanoestruturas que permitem o aprisionamento de portadores. Simulações numéricas usando um modelo heurístico mostraram que poucas nanoestruturas podem alterar o transporte elétrico num ensemble com centenas delas / Abstract: In this work we characterized the electrical properties of InAs/InP semiconductor nanostructures, mainly quantum dots e quantum wires, obtained by Stranski-Krastanov growth mode using chemical beam epitaxy (CBE). Topography, electrical conductance, and current-voltage measurements with spatial resolution were performed on the grown structures using atomic force microscopy in conductive mode (C-AFM) with metalized tip. Mesa-like structures were processed on the samples used in C-AFM; electrical measurements at temperatures lower than 273 K were then acquired. Three-dimensional thermionic emission (non-homogeneous) transport was observed between the conductive tip and the InAs nanostructures. This suggests that the nanostructure neighborhood, formed by the wetting layer (WL), changes the barrier height configuration and makes it dependent on the voltage applied to the metal-semiconductor junction. On the other hand, the threshold voltage, defined as the voltage necessary to detect the lowest current level, varies with nanostructure size and shape; it is related to the nanostructure electronic state and also to the semiconductor electronic gap that is smaller for the larger nanostructures. Electrical conductance via hopping and random telegraphic noise (RTN) were observed at low temperatures on the devices fabricated via e-beam with dozens or hundreds of InAs/InP nanostructures. The Éfros-Shklovskii hopping transport occurs at higher temperatures (> 70 K) and low polarizations where the device carrier density is low and the coulombian interaction is strong. Increasing the polarization the hopping changes to the Mott variable range on 2D system, which correlates to the WL dimensionality ¿the conduction channel. The RTN appears in low temperatures (< 40 K) but only in those devices with nanostructures that allow carrier trapping. Numerical simulations using a heuristic model showed that few nanostructures can change the electrical transport in an ensemble with hundreds of them / Doutorado / Física / Doutor em Ciências / 01/13463-1 / FAPESP
|
215 |
An electrically driven resonant tunnelling semiconductor quantum dot single photon sourceConterio, Michael John January 2015 (has links)
No description available.
|
216 |
Thermometry and refrigeration using quantum dotsMavalankar, Aquila Mukund January 2014 (has links)
No description available.
|
217 |
Ultrasmall silicon quantum dots for the realization of a spin qubitPerez Barraza, Julia Isabel January 2014 (has links)
No description available.
|
218 |
Signatures of charge noise and its impact on exciton qubitsPurohit, Vishal January 2016 (has links)
The research contained within this thesis concerns the detection, identification and effect of charge noise on quantum dot systems. In the first research chapter we study the cross correlation between pairs of exciton qubits subject to a common fluctuating charge environment, whose dynamics are solved using a transfer matrix approach. Our results show that we are able to discern features showing whether or not the charges interact with both quantum dots simultaneously i.e., form a correlated noise source. We find that qubits in a common charge environment display photon bunching, if both dots are driven on resonance or if the laser detunings are equal in both qubits and anitibunching if the laser detunings are in opposite directions. In the second research chapter we study the auto-correlation function of a single optically driven exciton qubit interacting with an environment consisting of 1/f noise and a fluctuating charge. We again use the transfer matrix method and a sum of Lorentzian distributions to approximate 1/f noise. Our simulations show that signatures of 1/f noise do exist in photon correlation measurements. From such measurements we are also able to determine a minimum cut-off frequency of the 1/f noise, in the case that there is such a cut-off. In addition we also show that a 1/f and a single fluctuator can be distinguished using the auto-correlation. In the final research chapter we study a pair of quantum dots, each with a low lying electron spin qubit and one higher lying level that can be selectively optically excited from one of the two spin states. Entanglement between the two spins can be achieved through path erasure. We look at the effect of a single fluctuating charge of the entanglement between these two `L' shaped electronic structures.
|
219 |
Energy transfer in hybrid system consisting of quantum dots/quantum wells and small luminescent moleculesWu, Weiwei 01 January 2009 (has links)
No description available.
|
220 |
Correlações fortes em nanoplasmônica / Strong correlations in nanoplasmonicsFernando Wellysson de Alencar Sobreira 23 November 2016 (has links)
A plasmônica tem chamado atenção nos últimos anos como um candidato viável para substituir a indústria eletrônica, assim como interação dos plásmons com a matéria devido a suas propriedades exóticas. O confinamento destes plásmons de superfície em nanoestruturas metálicas fabricadas com técnicas de litografia óptica, eletrônica e de íons cada vez mais avançadas, abriu a possibilidade de desenvolver vários modelos de dispositivos ópticos que trabalham na região do visível. Além disso, o estudo da interação de plásmons poláritons de superfície com emissores quânticos nas proximidades de nanoestruturas metálicas permite manipular as propriedades tanto dos plásmons como dos emissores quânticos. Tanto a preparação como a análise de amostras em plasmônica necessitam de técnicas capazes de investigar sistemas em nanoescala. Neste trabalho, investigamos a interação de plásmon poláritons confinados numa superfície de ouro com átomos artificiais, i.e. os emissores quânticos são pontos quânticos numa matriz de InAs/GaAs. Para isso, empregamos a análise da interação dos plásmons confinados numa grade metálica, com dimensões características abaixo do comprimento de onda da luz utilizada, assim como um sistema simples composto por uma na camada de ouro capaz de confinar plásmons em duas dimensões. A análise da interação com os estados de energia dos éxcitons nos pontos quânticos foi feita empregando medidas de micro-fotoluminescência a 77K e medidas de tempo de vida. Nos sistemas compostos pelas grades metálicas, observamos que é possível manipular a relação do espectro de luminescência correspondente a cada estado de energia do éxciton. Já no sistema composto pelo filme metálico simples, foi possível modificar o tempo de vida do estado fundamental do éxciton apenas modificando o cap layer da camada de pontos quânticos. / Plasmonics has drawn attention in recent years as a viable candidate to replace the electronics industry, as well as the interaction of plasmons with matter due to its exotic properties. The confinement of these surface plasmons in metal nanostructures made of increasingly advanced optical, electronic and ionic lithography techniques, opened the possibility of developing various models of optical devices working in the visible spectrum. Moreover, the study of interaction of surface plasmon polaritons with quantum emitters nearby metallic nanostructures opens a path to manipulate the properties of both plasmons and the quantum emitters. Both the preparation and analysis of samples in plasmonics require techniques capable of investigating nanoscale systems. In this thesis, we investigate the interaction of plasmon polaritons confined to a golden metallic surface with artificial atoms, i.e. quantum emitters consisting of quantum dots in a matrix of InAs/GaAs. For this, we used the analysis of the interaction of plasmons confined in a metallic grating with characteristic dimensions below the wavelength of light used, as well as a simple system composed of a thin gold layer which can confine plasmons in two dimensions. The analysis of the interaction with the exciton energy states in quantum dots was made using micro-photoluminescence measurements at 77 K and lifetime measurements. In systems composed by metal gratings, we note that it is possible to manipulate the relationship of the corresponding luminescence spectrum for each exciton energy state. In the system composed of the simple metal lm, it was possible to modify the ground state lifetime of the exciton only modifying the cap layer of the quantum dot layer.
|
Page generated in 0.043 seconds