• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Construction of lattice rules for multiple integration based on a weighted discrepancy

Sinescu, Vasile January 2008 (has links)
High-dimensional integrals arise in a variety of areas, including quantum physics, the physics and chemistry of molecules, statistical mechanics and more recently, in financial applications. In order to approximate multidimensional integrals, one may use Monte Carlo methods in which the quadrature points are generated randomly or quasi-Monte Carlo methods, in which points are generated deterministically. One particular class of quasi-Monte Carlo methods for multivariate integration is represented by lattice rules. Lattice rules constructed throughout this thesis allow good approximations to integrals of functions belonging to certain weighted function spaces. These function spaces were proposed as an explanation as to why integrals in many variables appear to be successfully approximated although the standard theory indicates that the number of quadrature points required for reasonable accuracy would be astronomical because of the large number of variables. The purpose of this thesis is to contribute to theoretical results regarding the construction of lattice rules for multiple integration. We consider both lattice rules for integrals over the unit cube and lattice rules suitable for integrals over Euclidean space. The research reported throughout the thesis is devoted to finding the generating vector required to produce lattice rules that have what is termed a low weighted discrepancy . In simple terms, the discrepancy is a measure of the uniformity of the distribution of the quadrature points or in other settings, a worst-case error. One of the assumptions used in these weighted function spaces is that variables are arranged in the decreasing order of their importance and the assignment of weights in this situation results in so-called product weights . In other applications it is rather the importance of group of variables that matters. This situation is modelled by using function spaces in which the weights are general . In the weighted settings mentioned above, the quality of the lattice rules is assessed by the weighted discrepancy mentioned earlier. Under appropriate conditions on the weights, the lattice rules constructed here produce a convergence rate of the error that ranges from O(n−1/2) to the (believed) optimal O(n−1+δ) for any δ gt 0, with the involved constant independent of the dimension.
2

Stochastic routing models in sensor networks

Keeler, Holger Paul January 2010 (has links)
Sensor networks are an evolving technology that promise numerous applications. The random and dynamic structure of sensor networks has motivated the suggestion of greedy data-routing algorithms. / In this thesis stochastic models are developed to study the advancement of messages under greedy routing in sensor networks. A model framework that is based on homogeneous spatial Poisson processes is formulated and examined to give a better understanding of the stochastic dependencies arising in the system. The effects of the model assumptions and the inherent dependencies are discussed and analyzed. A simple power-saving sleep scheme is included, and its effects on the local node density are addressed to reveal that it reduces one of the dependencies in the model. / Single hop expressions describing the advancement of messages are derived, and asymptotic expressions for the hop length moments are obtained. Expressions for the distribution of the multihop advancement of messages are derived. These expressions involve high-dimensional integrals, which are evaluated with quasi-Monte Carlo integration methods. An importance sampling function is derived to speed up the quasi-Monte Carlo methods. The subsequent results agree extremely well with those obtained via routing simulations. A renewal process model is proposed to model multihop advancements, and is justified under certain assumptions. / The model framework is extended by incorporating a spatially dependent density, which is inversely proportional to the sink distance. The aim of this extension is to demonstrate that an inhomogeneous Poisson process can be used to model a sensor network with spatially dependent node density. Elliptic integrals and asymptotic approximations are used to describe the random behaviour of hops. The final model extension entails including random transmission radii, the effects of which are discussed and analyzed. The thesis is concluded by giving future research tasks and directions.
3

Stochastic routing models in sensor networks

Keeler, Holger Paul January 2010 (has links)
Sensor networks are an evolving technology that promise numerous applications. The random and dynamic structure of sensor networks has motivated the suggestion of greedy data-routing algorithms. / In this thesis stochastic models are developed to study the advancement of messages under greedy routing in sensor networks. A model framework that is based on homogeneous spatial Poisson processes is formulated and examined to give a better understanding of the stochastic dependencies arising in the system. The effects of the model assumptions and the inherent dependencies are discussed and analyzed. A simple power-saving sleep scheme is included, and its effects on the local node density are addressed to reveal that it reduces one of the dependencies in the model. / Single hop expressions describing the advancement of messages are derived, and asymptotic expressions for the hop length moments are obtained. Expressions for the distribution of the multihop advancement of messages are derived. These expressions involve high-dimensional integrals, which are evaluated with quasi-Monte Carlo integration methods. An importance sampling function is derived to speed up the quasi-Monte Carlo methods. The subsequent results agree extremely well with those obtained via routing simulations. A renewal process model is proposed to model multihop advancements, and is justified under certain assumptions. / The model framework is extended by incorporating a spatially dependent density, which is inversely proportional to the sink distance. The aim of this extension is to demonstrate that an inhomogeneous Poisson process can be used to model a sensor network with spatially dependent node density. Elliptic integrals and asymptotic approximations are used to describe the random behaviour of hops. The final model extension entails including random transmission radii, the effects of which are discussed and analyzed. The thesis is concluded by giving future research tasks and directions.
4

Bayesian and Quasi-Monte Carlo spherical integration for global illumination

Marques, Ricardo 22 October 2013 (has links) (PDF)
The spherical sampling of the incident radiance function entails a high computational cost. Therefore the llumination integral must be evaluated using a limited set of samples. Such a restriction raises the question of how to obtain the most accurate approximation possible with such a limited set of samples. In this thesis, we show that existing Monte Carlo-based approaches can be improved by fully exploiting the information available which is later used for careful samples placement and weighting.The first contribution of this thesis is a strategy for producing high quality Quasi-Monte Carlo (QMC) sampling patterns for spherical integration by resorting to spherical Fibonacci point sets. We show that these patterns, when applied to the rendering integral, are very simple to generate and consistently outperform existing approaches. Furthermore, we introduce theoretical aspects on QMC spherical integration that, to our knowledge, have never been used in the graphics community, such as spherical cap discrepancy and point set spherical energy. These metrics allow assessing the quality of a spherical points set for a QMC estimate of a spherical integral.In the next part of the thesis, we propose a new heoretical framework for computing the Bayesian Monte Carlo quadrature rule. Our contribution includes a novel method of quadrature computation based on spherical Gaussian functions that can be generalized to a broad class of BRDFs (any BRDF which can be approximated sum of one or more spherical Gaussian functions) and potentially to other rendering applications. We account for the BRDF sharpness by using a new computation method for the prior mean function. Lastly, we propose a fast hyperparameters evaluation method that avoids the learning step.Our last contribution is the application of BMC with an adaptive approach for evaluating the illumination integral. The idea is to compute a first BMC estimate (using a first sample set) and, if the quality criterion is not met, directly inject the result as prior knowledge on a new estimate (using another sample set). The new estimate refines the previous estimate using a new set of samples, and the process is repeated until a satisfying result is achieved.
5

Bayesian and Quasi-Monte Carlo spherical integration for global illumination / Intégration sphérique Bayésien et Quasi-Monte Carlo pour l'illumination globale

Marques, Ricardo 22 October 2013 (has links)
La qualité du résultat des opérations d’échantillonnage pour la synthèse d'images est fortement dépendante du placement et de la pondération des échantillons. C’est pourquoi plusieurs travaux ont porté sur l’amélioration de l’échantillonnage purement aléatoire utilisée dans les techniques classiques de Monte Carlo. Leurs approches consistent à utiliser des séquences déterministes qui améliorent l’uniformité de la distribution des échantillons sur le domaine de l’intégration. L’estimateur résultant est alors appelé un estimateur de quasi-Monte Carlo (QMC).Dans cette thèse, nous nous focalisons sur le cas de l’échantillonnage pour l’intégration hémisphérique. Nous allons montrer que les approches existantes peuvent être améliorées en exploitant pleinement l’information disponible (par exemple, les propriétés statistiques de la fonction à intégrer) qui est ensuite utilisée pour le placement des échantillons et pour leur pondération. / The spherical sampling of the incident radiance function entails a high computational cost. Therefore the llumination integral must be evaluated using a limited set of samples. Such a restriction raises the question of how to obtain the most accurate approximation possible with such a limited set of samples. In this thesis, we show that existing Monte Carlo-based approaches can be improved by fully exploiting the information available which is later used for careful samples placement and weighting.The first contribution of this thesis is a strategy for producing high quality Quasi-Monte Carlo (QMC) sampling patterns for spherical integration by resorting to spherical Fibonacci point sets. We show that these patterns, when applied to the rendering integral, are very simple to generate and consistently outperform existing approaches. Furthermore, we introduce theoretical aspects on QMC spherical integration that, to our knowledge, have never been used in the graphics community, such as spherical cap discrepancy and point set spherical energy. These metrics allow assessing the quality of a spherical points set for a QMC estimate of a spherical integral.In the next part of the thesis, we propose a new heoretical framework for computing the Bayesian Monte Carlo quadrature rule. Our contribution includes a novel method of quadrature computation based on spherical Gaussian functions that can be generalized to a broad class of BRDFs (any BRDF which can be approximated sum of one or more spherical Gaussian functions) and potentially to other rendering applications. We account for the BRDF sharpness by using a new computation method for the prior mean function. Lastly, we propose a fast hyperparameters evaluation method that avoids the learning step.Our last contribution is the application of BMC with an adaptive approach for evaluating the illumination integral. The idea is to compute a first BMC estimate (using a first sample set) and, if the quality criterion is not met, directly inject the result as prior knowledge on a new estimate (using another sample set). The new estimate refines the previous estimate using a new set of samples, and the process is repeated until a satisfying result is achieved.
6

Modélisation d’actifs industriels pour l’optimisation robuste de stratégies de maintenance / Modelling of industrial assets in view of robust maintenance optimization

Demgne, Jeanne Ady 16 October 2015 (has links)
Ce travail propose de nouvelles méthodes d’évaluation d’indicateurs de risque associés à une stratégie d’investissements, en vue d’une optimisation robuste de la maintenance d’un parc de composants. La quantification de ces indicateurs nécessite une modélisation rigoureuse de l’évolution stochastique des durées de vie des composants soumis à maintenance. Pour ce faire, nous proposons d’utiliser des processus markoviens déterministes par morceaux, qui sont généralement utilisés en Fiabilité Dynamique pour modéliser des composants en interaction avec leur environnement. Les indicateurs de comparaison des stratégies de maintenance candidates sont issus de la Valeur Actuelle Nette (VAN). La VAN représente la différence entre les flux financiers associés à une stratégie de référence et ceux associés à une stratégie de maintenance candidate. D’un point de vue probabiliste, la VAN est la différence de deux variables aléatoires dépendantes, ce qui en complique notablement l’étude. Dans cette thèse, les méthodes de Quasi Monte Carlo sont utilisées comme alternatives à la méthode de Monte Carlo pour la quantification de la loi de la VAN. Ces méthodes sont dans un premier temps appliquées sur des exemples illustratifs. Ensuite, elles ont été adaptées pour l’évaluation de stratégie de maintenance de deux systèmes de composants d’une centrale de production d’électricité. Le couplage de ces méthodes à un algorithme génétique a permis d’optimiser une stratégie d’investissements. / This work proposes new assessment methods of risk indicators associated with an investments plan in view of a robust maintenance optimization of a fleet of components. The quantification of these indicators requires a rigorous modelling of the stochastic evolution of the lifetimes of components subject to maintenance. With that aim, we propose to use Piecewise Deterministic Markov Processes which are usually used in Dynamic Reliability for the modelling of components in interaction with their environment. The comparing indicators of candidate maintenance strategies are derived from the Net Present Value (NPV). The NPV stands for the difference between the cumulated discounted cash-flows of both reference and candidate maintenance strategies. From a probabilistic point of view, the NPV is the difference between two dependent random variables, which complicates its study. In this thesis, Quasi Monte Carlo methods are used as alternatives to Monte Carlo method for the quantification of the NPV probabilistic distribution. These methods are firstly applied to illustrative examples. Then, they were adapted to the assessment of maintenance strategy of two systems of components of an electric power station. The coupling of these methods with a genetic algorithm has allowed to optimize an investments plan.

Page generated in 0.0918 seconds