• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topological Properties of Quasiconformal Automorphism Groups / Topologische Eigenschaften quasikonformer Automorphismengruppen

Biersack, Florian January 2024 (has links) (PDF)
The goal of this thesis is to study the topological and algebraic properties of the quasiconformal automorphism groups of simply and multiply connected domains in the complex plain, in which the quasiconformal automorphism groups are endowed with the supremum metric on the underlying domain. More precisely, questions concerning central topological properties such as (local) compactness, (path)-connectedness and separability and their dependence on the boundary of the corresponding domains are studied, as well as completeness with respect to the supremum metric. Moreover, special subsets of the quasiconformal automorphism group of the unit disk are investigated, and concrete quasiconformal automorphisms are constructed. Finally, a possible application of quasiconformal unit disk automorphisms to symmetric cryptography is presented, in which a quasiconformal cryptosystem is defined and studied. / Das Ziel dieser Arbeit ist es, die topologischen und algebraischen Eigenschaften der quasikonformen Automorphismengruppen von einfach und mehrfach zusammenhängenden Gebieten in der komplexen Zahlenebene zu untersuchen, in denen die quasikonformen Automorphismengruppen mit der Supremum-Metrik auf dem zugrunde liegenden Gebiet versehen sind. Die Arbeit befasst sich mit Fragen zu zentralen topologischen Eigenschaften wie (lokaler) Kompaktheit, (Weg-)Zusammenhang und Separabilität sowie deren Abhängigkeit der Ränder der entsprechenden Gebiete, sowie mit der Vollständigkeit bezüglich der betrachteten Supremums-Metrik. Darüber hinaus werden spezielle Teilmengen der quasikonformen Automorphismengruppe des Einheitskreises untersucht und konkrete quasikonforme Automorphismen konstruiert. Schließlich wird eine mögliche Anwendung von quasikonformen Einheitskreis-Automorphismen auf symmetrische Kryptographie vorgestellt, bei der ein quasikonformes Kryptosystem definiert und untersucht wird.

Page generated in 0.0563 seconds