• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quoric manifolds

Hopkinson, Jeremy Franklin Lawrence January 2012 (has links)
Davis and Januszkiewicz introduced in 1981 a family of compact real manifolds, the Quasi-Toric Manifolds, with a group action by a torus, a direct product of circle (T) groups. Their manifolds have an orbit space which is a simple polytope with a distinct isotropy subgroup associated to each face of the polytope, subject to some consistency conditions. They defined a characteristic function which captured the properties of the isotropy subgroups, and showed that their manifolds can be classified by the polytope and characteristic function. They further showed that the cohomology ring of the manifold can be written down directly from properties derived from the polytope and the characteristic function. This work considers the question of how far the circle group T can be replaced by the group of unit quaternions Q in the construction and description of quasi-toric manifolds. Unlike T, the group Q is not commutative, so the actions of Q n on the product H n of the set of quaternions using quaternionic multiplication are studied in detail. Then, in direct analogy to the quasi-toric manifolds, a family of compact real manifolds, the Quoric Manifolds, is introduced which have an action by Q n, and whose orbit space is a polytope. A characteristic functor is defined on the faces of the polytope which captures the properties of the isotropy classes of the orbits of the action. It is shown that quoric manifolds can be classified in a manner similar to the quasi-toric manifolds, by the polytope and characteristic functor. A restricted family, the global quoric manifolds, which satisfy an additional condition are defined. It is shown that an infinite number of polytopes exist in any dimension over which a global quoric manifold can be defined. It is shown that any global quoric manifold can be described as a quotient space of a moment angle complex over the polytope, and that its integral cohomology ring can be calculated, taking a form analagous to that in the quasi-toric case.
2

Unidades de ZC2p e Aplicações / Units of ZC2p and Applications

Silva, Renata Rodrigues Marcuz 13 April 2012 (has links)
Seja p um número primo e seja uma raiz p - ésima primitiva da unidade. Considere os seguintes elementos i := 1 + + 2 + ... + i-1 para todo 1 i k do anel Z[] onde k = (p-1)/2. Nesta tese nós descrevemos explicitamente um conjunto gerador para o grupo das unidades do anel de grupo integral ZC2p; representado por U(ZC2p); onde C2p representa o grupo cíclico de ordem 2p e p satisfaz as seguintes condições: S := { -1, , u2, ... uk } gera U(Z[]) e U(Zp) = ou U(Zp)2 = e -1 U(Zp); que são verificadas para p = 7; 11; 13; 19; 23; 29; 53; 59; 61 e 67. Com o intuito de estender tais ideias encontramos um conjunto gerador para U(Z(C2p x C2) e U(Z(C2p x C2 x C2) onde p satisfaz as mesmas condições anteriores acrescidas de uma nova hipótese. Finalmente com o auxílio dos resultados anteriores apresentamos um conjunto gerador das unidades centrais do anel de grupo Z(Cp x Q8); onde Q8 representa o grupo dos quatérnios, ou seja, Q8 := <a; b : a4 = 1; a2 = b2; b-1 a b = a-1 >. / Let p be an odd prime integer, be a pth primitive root of unity, Cn be the cyclic group of order n, and U(ZG) the units of the Integral Group Ring ZG: Consider ui := 1++2 +: : :+i1 for 2 i p + 1 2 : In our study we describe explicitly the generator set of U(ZC2p); where p is such that S := f1; ; u2; : : : ; up1 2 g generates U(Z[]) and U(Zp) is such that U(Zp) = 2 or U(Zp)2 = 2 and 1 =2 U(Zp)2; which occurs for p = 7; 11; 13; 19; 23; 29; 37; 53; 59; 61, and 67: For another values of p we don\'t know if such conditions hold. In addition, under suitable hypotheses, we extend these ideas and build a generator set of U(Z(C2p C2)) and U(Z(C2p C2 C2)): Besides that, using the previous results, we exhibit a generator set for the central units of the group ring Z(Cp Q8) where Q8 represents the quaternion group.
3

Unidades de ZC2p e Aplicações / Units of ZC2p and Applications

Renata Rodrigues Marcuz Silva 13 April 2012 (has links)
Seja p um número primo e seja uma raiz p - ésima primitiva da unidade. Considere os seguintes elementos i := 1 + + 2 + ... + i-1 para todo 1 i k do anel Z[] onde k = (p-1)/2. Nesta tese nós descrevemos explicitamente um conjunto gerador para o grupo das unidades do anel de grupo integral ZC2p; representado por U(ZC2p); onde C2p representa o grupo cíclico de ordem 2p e p satisfaz as seguintes condições: S := { -1, , u2, ... uk } gera U(Z[]) e U(Zp) = ou U(Zp)2 = e -1 U(Zp); que são verificadas para p = 7; 11; 13; 19; 23; 29; 53; 59; 61 e 67. Com o intuito de estender tais ideias encontramos um conjunto gerador para U(Z(C2p x C2) e U(Z(C2p x C2 x C2) onde p satisfaz as mesmas condições anteriores acrescidas de uma nova hipótese. Finalmente com o auxílio dos resultados anteriores apresentamos um conjunto gerador das unidades centrais do anel de grupo Z(Cp x Q8); onde Q8 representa o grupo dos quatérnios, ou seja, Q8 := <a; b : a4 = 1; a2 = b2; b-1 a b = a-1 >. / Let p be an odd prime integer, be a pth primitive root of unity, Cn be the cyclic group of order n, and U(ZG) the units of the Integral Group Ring ZG: Consider ui := 1++2 +: : :+i1 for 2 i p + 1 2 : In our study we describe explicitly the generator set of U(ZC2p); where p is such that S := f1; ; u2; : : : ; up1 2 g generates U(Z[]) and U(Zp) is such that U(Zp) = 2 or U(Zp)2 = 2 and 1 =2 U(Zp)2; which occurs for p = 7; 11; 13; 19; 23; 29; 37; 53; 59; 61, and 67: For another values of p we don\'t know if such conditions hold. In addition, under suitable hypotheses, we extend these ideas and build a generator set of U(Z(C2p C2)) and U(Z(C2p C2 C2)): Besides that, using the previous results, we exhibit a generator set for the central units of the group ring Z(Cp Q8) where Q8 represents the quaternion group.

Page generated in 0.0503 seconds