• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Unidades de ZC2p e Aplicações / Units of ZC2p and Applications

Silva, Renata Rodrigues Marcuz 13 April 2012 (has links)
Seja p um número primo e seja uma raiz p - ésima primitiva da unidade. Considere os seguintes elementos i := 1 + + 2 + ... + i-1 para todo 1 i k do anel Z[] onde k = (p-1)/2. Nesta tese nós descrevemos explicitamente um conjunto gerador para o grupo das unidades do anel de grupo integral ZC2p; representado por U(ZC2p); onde C2p representa o grupo cíclico de ordem 2p e p satisfaz as seguintes condições: S := { -1, , u2, ... uk } gera U(Z[]) e U(Zp) = ou U(Zp)2 = e -1 U(Zp); que são verificadas para p = 7; 11; 13; 19; 23; 29; 53; 59; 61 e 67. Com o intuito de estender tais ideias encontramos um conjunto gerador para U(Z(C2p x C2) e U(Z(C2p x C2 x C2) onde p satisfaz as mesmas condições anteriores acrescidas de uma nova hipótese. Finalmente com o auxílio dos resultados anteriores apresentamos um conjunto gerador das unidades centrais do anel de grupo Z(Cp x Q8); onde Q8 representa o grupo dos quatérnios, ou seja, Q8 := <a; b : a4 = 1; a2 = b2; b-1 a b = a-1 >. / Let p be an odd prime integer, be a pth primitive root of unity, Cn be the cyclic group of order n, and U(ZG) the units of the Integral Group Ring ZG: Consider ui := 1++2 +: : :+i1 for 2 i p + 1 2 : In our study we describe explicitly the generator set of U(ZC2p); where p is such that S := f1; ; u2; : : : ; up1 2 g generates U(Z[]) and U(Zp) is such that U(Zp) = 2 or U(Zp)2 = 2 and 1 =2 U(Zp)2; which occurs for p = 7; 11; 13; 19; 23; 29; 37; 53; 59; 61, and 67: For another values of p we don\'t know if such conditions hold. In addition, under suitable hypotheses, we extend these ideas and build a generator set of U(Z(C2p C2)) and U(Z(C2p C2 C2)): Besides that, using the previous results, we exhibit a generator set for the central units of the group ring Z(Cp Q8) where Q8 represents the quaternion group.
2

Unidades de ZC2p e Aplicações / Units of ZC2p and Applications

Renata Rodrigues Marcuz Silva 13 April 2012 (has links)
Seja p um número primo e seja uma raiz p - ésima primitiva da unidade. Considere os seguintes elementos i := 1 + + 2 + ... + i-1 para todo 1 i k do anel Z[] onde k = (p-1)/2. Nesta tese nós descrevemos explicitamente um conjunto gerador para o grupo das unidades do anel de grupo integral ZC2p; representado por U(ZC2p); onde C2p representa o grupo cíclico de ordem 2p e p satisfaz as seguintes condições: S := { -1, , u2, ... uk } gera U(Z[]) e U(Zp) = ou U(Zp)2 = e -1 U(Zp); que são verificadas para p = 7; 11; 13; 19; 23; 29; 53; 59; 61 e 67. Com o intuito de estender tais ideias encontramos um conjunto gerador para U(Z(C2p x C2) e U(Z(C2p x C2 x C2) onde p satisfaz as mesmas condições anteriores acrescidas de uma nova hipótese. Finalmente com o auxílio dos resultados anteriores apresentamos um conjunto gerador das unidades centrais do anel de grupo Z(Cp x Q8); onde Q8 representa o grupo dos quatérnios, ou seja, Q8 := <a; b : a4 = 1; a2 = b2; b-1 a b = a-1 >. / Let p be an odd prime integer, be a pth primitive root of unity, Cn be the cyclic group of order n, and U(ZG) the units of the Integral Group Ring ZG: Consider ui := 1++2 +: : :+i1 for 2 i p + 1 2 : In our study we describe explicitly the generator set of U(ZC2p); where p is such that S := f1; ; u2; : : : ; up1 2 g generates U(Z[]) and U(Zp) is such that U(Zp) = 2 or U(Zp)2 = 2 and 1 =2 U(Zp)2; which occurs for p = 7; 11; 13; 19; 23; 29; 37; 53; 59; 61, and 67: For another values of p we don\'t know if such conditions hold. In addition, under suitable hypotheses, we extend these ideas and build a generator set of U(Z(C2p C2)) and U(Z(C2p C2 C2)): Besides that, using the previous results, we exhibit a generator set for the central units of the group ring Z(Cp Q8) where Q8 represents the quaternion group.

Page generated in 0.0965 seconds