Spelling suggestions: "subject:"quaternionenanalysis"" "subject:"union:analysis""
1 |
Die Anwendung der hyperkomplexen Funktionentheorie auf die Lösung partieller DifferentialgleichungenKähler, Uwe 29 September 1998 (has links) (PDF)
In der vorliegenden Arbeit wird die Methode der Anwendung der hyperkomplexen Funktionentheorie
zur Behandlung partieller Differentialgleichungen über beschränkten Gebieten unter Benutzung
einer orthogonalen Zerlegung des Raumes L_2(U) verallgemeinert. Zum einen kann diese Zerlegung
als direkte Zerlegung über dem Raum L_p(G),p>1, verallgemeinert werden, was die Untersuchung
partieller Differentialgleichungen über allgemeinen Sobolev-Räumen W_p^k(G),p>1,k natürliche Zahl,
ermöglicht. Dies wird am Beispiel des Stokes-Problems demonstriert. Zum anderen wird ein modifizierter
Cauchy-Kern über unbeschränkten Gebieten eingeführt, deren Komplement eine nichtleere offene Menge
enthält. Grundlegende Resultate der Cliffordanalysis über beschränkten Gebieten werden auf diese
Situation verallgemeinert und eine orthogonale Zerlegung des Raumes L_2(G) bewiesen. Diese Resultate
werden im weiteren dazu benutzt, das stationäre Stokes- bzw. Navier-Stokes-Problem in dem allgemeinen
Fall eines unbeschränkten Gebietes zu untersuchen. Im weiteren wird gezeigt, dass sich die entwickelten
Methoden auch auf partielle Differentialgleichungen höherer Ordnung anwenden lassen. Dies wird am
Beispiel der biharmonischen Gleichung mit Randbedingungen, die Komponenten in Normalenrichtung und
tangentieller Richtung besitzen, demonstriert. Am Ende beschäftigen wir uns mit der Verallgemeinerung
der komplexen Methoden von Vekua. Dazu werden hyperkomplexe Verallgemeinerungen des komplexen Pi-Operators
untersucht und auf die Lösung von hyperkomplexen Beltramigleichungen angewandt. / A modified Cauchy kernel is introduced over unbounded domains whose complement contain non-empty open sets.
Basic results on Clifford analysis over bounded domains are now carried over to this more general context.
In the end boundary value problems, e.g. for the Stokes-system or the Navier-Stokes-system, will be studied
in the case of an unbounded domain without using weighted Sobolev spaces. In the latter part of this paper
we deal with hypercomplex generalizations of the complex Pi-operator which turn out to have most of the useful
properties of their complex origin. Afterwards the application of this operator to the solution of hypercomplex
Beltrami equations will be studied.
|
2 |
Die Anwendung der hyperkomplexen Funktionentheorie auf die Lösung partieller DifferentialgleichungenKähler, Uwe 01 September 1998 (has links)
In der vorliegenden Arbeit wird die Methode der Anwendung der hyperkomplexen Funktionentheorie
zur Behandlung partieller Differentialgleichungen über beschränkten Gebieten unter Benutzung
einer orthogonalen Zerlegung des Raumes L_2(U) verallgemeinert. Zum einen kann diese Zerlegung
als direkte Zerlegung über dem Raum L_p(G),p>1, verallgemeinert werden, was die Untersuchung
partieller Differentialgleichungen über allgemeinen Sobolev-Räumen W_p^k(G),p>1,k natürliche Zahl,
ermöglicht. Dies wird am Beispiel des Stokes-Problems demonstriert. Zum anderen wird ein modifizierter
Cauchy-Kern über unbeschränkten Gebieten eingeführt, deren Komplement eine nichtleere offene Menge
enthält. Grundlegende Resultate der Cliffordanalysis über beschränkten Gebieten werden auf diese
Situation verallgemeinert und eine orthogonale Zerlegung des Raumes L_2(G) bewiesen. Diese Resultate
werden im weiteren dazu benutzt, das stationäre Stokes- bzw. Navier-Stokes-Problem in dem allgemeinen
Fall eines unbeschränkten Gebietes zu untersuchen. Im weiteren wird gezeigt, dass sich die entwickelten
Methoden auch auf partielle Differentialgleichungen höherer Ordnung anwenden lassen. Dies wird am
Beispiel der biharmonischen Gleichung mit Randbedingungen, die Komponenten in Normalenrichtung und
tangentieller Richtung besitzen, demonstriert. Am Ende beschäftigen wir uns mit der Verallgemeinerung
der komplexen Methoden von Vekua. Dazu werden hyperkomplexe Verallgemeinerungen des komplexen Pi-Operators
untersucht und auf die Lösung von hyperkomplexen Beltramigleichungen angewandt. / A modified Cauchy kernel is introduced over unbounded domains whose complement contain non-empty open sets.
Basic results on Clifford analysis over bounded domains are now carried over to this more general context.
In the end boundary value problems, e.g. for the Stokes-system or the Navier-Stokes-system, will be studied
in the case of an unbounded domain without using weighted Sobolev spaces. In the latter part of this paper
we deal with hypercomplex generalizations of the complex Pi-operator which turn out to have most of the useful
properties of their complex origin. Afterwards the application of this operator to the solution of hypercomplex
Beltrami equations will be studied.
|
3 |
Hyperholomorphic structures and corresponding explicit orthogonal function systems in 3D and 4D / Hyperholomorphe Strukturen und entsprechende explizite orthogonale Funktionensysteme in 3D und 4DLe, Thu Hoai 22 August 2014 (has links) (PDF)
Die Reichhaltigkeit und breite Anwendbarkeit der Theorie der holomorphen Funktionen in der komplexen Ebene ist stark motivierend eine ähnliche Theorie für höhere Dimensionen zu entwickeln. Viele Forscher waren und sind in diese Aufgaben involviert, insbesondere in der Entwicklung der Quaternionenanalysis. In den letzten Jahren wurde die Quaternionenanalysis bereits erfolgreich auf eine Vielzahl von Problemen der mathematischen Physik angewandt.
Das Ziel der Dissertation besteht darin, holomorphe Strukturen in höheren Dimensionen zu studieren. Zunächst wird ein neues Holomorphiekonzept vorgelegt, was auf der Theorie rechtsinvertierbarer Operatoren basiert und nicht auf Verallgemeinerungen des Cauchy-Riemann-Systems wie üblich. Dieser Begriff umfasst die meisten der gut bekannten holomorphen Strukturen in höheren Dimensionen. Unter anderem sind die üblichen Modelle für reelle und komplexe quaternionenwertige Funktionen sowie Clifford-algebra-wertige Funktionen enthalten. Außerdem werden holomorphe Funktionen mittels einer geeignete Formel vom Taylor-Typ durch spezielle Funktionen lokal approximiert.
Um globale Approximationen für holomorphe Funktionen zu erhalten, werden im zweiten Teil der Arbeit verschiedene Systeme holomorpher Basisfunktionen in drei und vier Dimensionen mittels geeigneter Fourier-Entwicklungen explizit konstruiert. Das Konzept der Holomorphie ist verbunden mit der Lösung verallgemeinerter Cauchy-Riemann Systeme, deren Funktionswerte reellen Quaternionen bzw. reduzierte Quaternionen sind. In expliziter Form werden orthogonale holomorphe Funktionensysteme konstruiert, die Lösungen des Riesz-Systems bzw. des Moisil-Teodorescu Systems über zylindrischen Gebieten im R3, sowie Lösungen des Riesz-Systems in Kugeln des R4 sind. Um konkrete Anwendungen auf Randwertprobleme realisieren zu können wird eine orthogonale Zerlegung eines Rechts-Quasi-Hilbert-Moduls komplex-quaternionischer Funktionen unter gegebenen Bedingungen studiert. Die Ergebnisse werden auf die Behandlung von Maxwell-Gleichungen mit zeitvariabler elektrischer Dielektrizitätskonstante und magnetischer Permeabilität angewandt. / The richness and widely applicability of the theory of holomorphic functions in complex analysis requires to perform a similar theory in higher dimensions. It has been developed by many researchers so far, especially in quaternionic analysis. Over the last years, it has been successfully applied to a vast array of problems in mathematical physics.
The aim of this thesis is to study the structure of holomorphy in higher dimensions. First, a new concept of holomorphy is introduced based on the theory of right invertible operators, and not by means of an analogue of the Cauchy-Riemann operator as usual. This notion covers most of the well-known holomorphic structures in higher dimensions including real, complex, quaternionic, Clifford analysis, among others. In addition, from our operators a local approximation of a holomorphic function is attained by the Taylor type formula.
In order to obtain the global approximation for holomorphic functions, the second part of the thesis deals with the construction of different systems of basis holomorphic functions in three and four dimensions by means of Fourier analysis. The concept of holomorphy is related to the null-solutions of generalized Cauchy-Riemann systems, which take either values in the reduced quaternions or real quaternions. We obtain several explicit orthogonal holomorphic function systems: solutions to the Riesz and Moisil-Teodorescu systems over cylindrical domains in R3, and solutions to the Riesz system over spherical domains in R4. Having in mind concrete applications to boundary value problems, we investigate an orthogonal decomposition of complex-quaternionic functions over a right quasi-Hilbert module under given conditions. It is then applied to the treatment of Maxwell’s equations with electric permittivity and magnetic permeability depending on the time variable.
|
4 |
Hyperholomorphic structures and corresponding explicit orthogonal function systems in 3D and 4DLe, Thu Hoai 20 June 2014 (has links)
Die Reichhaltigkeit und breite Anwendbarkeit der Theorie der holomorphen Funktionen in der komplexen Ebene ist stark motivierend eine ähnliche Theorie für höhere Dimensionen zu entwickeln. Viele Forscher waren und sind in diese Aufgaben involviert, insbesondere in der Entwicklung der Quaternionenanalysis. In den letzten Jahren wurde die Quaternionenanalysis bereits erfolgreich auf eine Vielzahl von Problemen der mathematischen Physik angewandt.
Das Ziel der Dissertation besteht darin, holomorphe Strukturen in höheren Dimensionen zu studieren. Zunächst wird ein neues Holomorphiekonzept vorgelegt, was auf der Theorie rechtsinvertierbarer Operatoren basiert und nicht auf Verallgemeinerungen des Cauchy-Riemann-Systems wie üblich. Dieser Begriff umfasst die meisten der gut bekannten holomorphen Strukturen in höheren Dimensionen. Unter anderem sind die üblichen Modelle für reelle und komplexe quaternionenwertige Funktionen sowie Clifford-algebra-wertige Funktionen enthalten. Außerdem werden holomorphe Funktionen mittels einer geeignete Formel vom Taylor-Typ durch spezielle Funktionen lokal approximiert.
Um globale Approximationen für holomorphe Funktionen zu erhalten, werden im zweiten Teil der Arbeit verschiedene Systeme holomorpher Basisfunktionen in drei und vier Dimensionen mittels geeigneter Fourier-Entwicklungen explizit konstruiert. Das Konzept der Holomorphie ist verbunden mit der Lösung verallgemeinerter Cauchy-Riemann Systeme, deren Funktionswerte reellen Quaternionen bzw. reduzierte Quaternionen sind. In expliziter Form werden orthogonale holomorphe Funktionensysteme konstruiert, die Lösungen des Riesz-Systems bzw. des Moisil-Teodorescu Systems über zylindrischen Gebieten im R3, sowie Lösungen des Riesz-Systems in Kugeln des R4 sind. Um konkrete Anwendungen auf Randwertprobleme realisieren zu können wird eine orthogonale Zerlegung eines Rechts-Quasi-Hilbert-Moduls komplex-quaternionischer Funktionen unter gegebenen Bedingungen studiert. Die Ergebnisse werden auf die Behandlung von Maxwell-Gleichungen mit zeitvariabler elektrischer Dielektrizitätskonstante und magnetischer Permeabilität angewandt. / The richness and widely applicability of the theory of holomorphic functions in complex analysis requires to perform a similar theory in higher dimensions. It has been developed by many researchers so far, especially in quaternionic analysis. Over the last years, it has been successfully applied to a vast array of problems in mathematical physics.
The aim of this thesis is to study the structure of holomorphy in higher dimensions. First, a new concept of holomorphy is introduced based on the theory of right invertible operators, and not by means of an analogue of the Cauchy-Riemann operator as usual. This notion covers most of the well-known holomorphic structures in higher dimensions including real, complex, quaternionic, Clifford analysis, among others. In addition, from our operators a local approximation of a holomorphic function is attained by the Taylor type formula.
In order to obtain the global approximation for holomorphic functions, the second part of the thesis deals with the construction of different systems of basis holomorphic functions in three and four dimensions by means of Fourier analysis. The concept of holomorphy is related to the null-solutions of generalized Cauchy-Riemann systems, which take either values in the reduced quaternions or real quaternions. We obtain several explicit orthogonal holomorphic function systems: solutions to the Riesz and Moisil-Teodorescu systems over cylindrical domains in R3, and solutions to the Riesz system over spherical domains in R4. Having in mind concrete applications to boundary value problems, we investigate an orthogonal decomposition of complex-quaternionic functions over a right quasi-Hilbert module under given conditions. It is then applied to the treatment of Maxwell’s equations with electric permittivity and magnetic permeability depending on the time variable.
|
Page generated in 0.0663 seconds