• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • Tagged with
  • 13
  • 13
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Têmpera e partição em ferros fundidos nodulares. / Quenching & partitioning of ductile cast Irons.

Silva, Anderson José Saretta Tomaz da 15 August 2013 (has links)
Um novo ciclo de tratamento térmico denominado como têmpera e partição vem sendo desenvolvido em aços com elevados teores de silício, como rota para obtenção de estruturas com frações consideráveis de austenia retida. Essa rota de tratamento m térmico consiste em realizar uma têmpera temperaturas intermediárias entre Ms e Mf, seguido de um reaquecimento com manutenção em patamares isotérmicos por certos intervalos de tempo, objetivando estabilizar a austenita remanescente através da partição do carbono a partir da martensita supersaturada. No presente trabalho, duas ligas de ferros fundidos nodulares convencionais, com diferentes teores de silício e manganês, foram submetidas a ciclos de têmpera e partição. As amostras foram austenitizadas a 900°C por duas horas. Uma das ligas foi temperada em óleo a 160°C e a outra a 170°C por 2 minutos. Imediatamente após a têmpera as amostras foram reaquecidas em temperaturas entre 300 e 450°C por intervalos de tempo que variaram entre 2 e 180 minutos. A caracterização microestrutural foi realizada através de microscopia eletrônica de varredura (MEV) e difração de raios x. A caracterização mecânica foi feita através de ensaios de energia absorvida ao impacto, dureza HRC e ensaios de tração. A caracterização microestrutural evidenciou que os ciclos de têmpera e partição são viáveis na obtenção de frações consideráveis de austenita retida nos ferros fundidos nodulares. A caracterização mecânica evidenciou que foi possível obter boas combinações de energia absorvida ao impacto, resistência à tração e alongamento. Em todas as condições testadas é possível perceber uma janela de processo bem definida caracterizada por valores crescentes das propriedades mecânicas nos primeiros minutos do ciclo de partição e que decrescem após certo intervalo de tempo. O conjunto de propriedades mecânicas obtidas através dessa rota de tratamentos térmicos indica que os ferros fundidos nodulares submetidos ao ciclo de têmpera e partição podem se constituir como alternativa tecnológica para aplicações comerciais nas quais os ferros fundidos nodulares austemperados já são materiais consolidados. / A new heat treatment cycle known as quenching and partitioning has been developed in commercial steel alloys containing silicon as a way to obtain structures with controlled fractions of retained austenite. This heat treatment cycle consists in performing a quenching in temperatures between Ms and Mf, followed by a reheating with isothermal holding by different time intervals. The aim of this cycle is to achieve the austenite stabilization by diffusion of carbon from the supersaturated plates of martensite. In this work, two conventional ductile cast iron alloys, with two different contents of silicon and manganese were heat-treated in quenching and partitioning cycle. The samples were austenitized at 900°C for two hours, followed by quenching in oil at 160° C and 170° C for two minutes. Immediately after quenching, the samples were reheated at temperatures between 300 and 450°C for time intervals between 2 and 180 minutes. The microstructural characterization was performed using electronic microscopy (SEM) and x-ray diffraction. The mechanical characterization was performed using impact tests, hardness and tensile strength tests. The microstructural characterization showed that the cycles of quenching and partitioning are viable to obtain considerable fractions of retained austenite in nodular cast by this heat treatment route. The mechanical characterization showed that it was possible to obtain good combinations of energy absorbed in the impact, tensile strength and elongation. In all tested conditions was possible to perceive a well-defined process window characterized by increasing values of mechanical properties in the first minutes of the partitioning step, and decrease after certain time intervals. The set of mechanical properties obtained by this route of heat treatments indicates that nodular cast iron subjected to tempering and partitioning cycle can be constituted as an alternative technology for commercial applications in which austempered ductile irons are already consolidated materials.
2

Têmpera e partição em ferros fundidos nodulares. / Quenching & partitioning of ductile cast Irons.

Anderson José Saretta Tomaz da Silva 15 August 2013 (has links)
Um novo ciclo de tratamento térmico denominado como têmpera e partição vem sendo desenvolvido em aços com elevados teores de silício, como rota para obtenção de estruturas com frações consideráveis de austenia retida. Essa rota de tratamento m térmico consiste em realizar uma têmpera temperaturas intermediárias entre Ms e Mf, seguido de um reaquecimento com manutenção em patamares isotérmicos por certos intervalos de tempo, objetivando estabilizar a austenita remanescente através da partição do carbono a partir da martensita supersaturada. No presente trabalho, duas ligas de ferros fundidos nodulares convencionais, com diferentes teores de silício e manganês, foram submetidas a ciclos de têmpera e partição. As amostras foram austenitizadas a 900°C por duas horas. Uma das ligas foi temperada em óleo a 160°C e a outra a 170°C por 2 minutos. Imediatamente após a têmpera as amostras foram reaquecidas em temperaturas entre 300 e 450°C por intervalos de tempo que variaram entre 2 e 180 minutos. A caracterização microestrutural foi realizada através de microscopia eletrônica de varredura (MEV) e difração de raios x. A caracterização mecânica foi feita através de ensaios de energia absorvida ao impacto, dureza HRC e ensaios de tração. A caracterização microestrutural evidenciou que os ciclos de têmpera e partição são viáveis na obtenção de frações consideráveis de austenita retida nos ferros fundidos nodulares. A caracterização mecânica evidenciou que foi possível obter boas combinações de energia absorvida ao impacto, resistência à tração e alongamento. Em todas as condições testadas é possível perceber uma janela de processo bem definida caracterizada por valores crescentes das propriedades mecânicas nos primeiros minutos do ciclo de partição e que decrescem após certo intervalo de tempo. O conjunto de propriedades mecânicas obtidas através dessa rota de tratamentos térmicos indica que os ferros fundidos nodulares submetidos ao ciclo de têmpera e partição podem se constituir como alternativa tecnológica para aplicações comerciais nas quais os ferros fundidos nodulares austemperados já são materiais consolidados. / A new heat treatment cycle known as quenching and partitioning has been developed in commercial steel alloys containing silicon as a way to obtain structures with controlled fractions of retained austenite. This heat treatment cycle consists in performing a quenching in temperatures between Ms and Mf, followed by a reheating with isothermal holding by different time intervals. The aim of this cycle is to achieve the austenite stabilization by diffusion of carbon from the supersaturated plates of martensite. In this work, two conventional ductile cast iron alloys, with two different contents of silicon and manganese were heat-treated in quenching and partitioning cycle. The samples were austenitized at 900°C for two hours, followed by quenching in oil at 160° C and 170° C for two minutes. Immediately after quenching, the samples were reheated at temperatures between 300 and 450°C for time intervals between 2 and 180 minutes. The microstructural characterization was performed using electronic microscopy (SEM) and x-ray diffraction. The mechanical characterization was performed using impact tests, hardness and tensile strength tests. The microstructural characterization showed that the cycles of quenching and partitioning are viable to obtain considerable fractions of retained austenite in nodular cast by this heat treatment route. The mechanical characterization showed that it was possible to obtain good combinations of energy absorbed in the impact, tensile strength and elongation. In all tested conditions was possible to perceive a well-defined process window characterized by increasing values of mechanical properties in the first minutes of the partitioning step, and decrease after certain time intervals. The set of mechanical properties obtained by this route of heat treatments indicates that nodular cast iron subjected to tempering and partitioning cycle can be constituted as an alternative technology for commercial applications in which austempered ductile irons are already consolidated materials.
3

Investigation of the Effect of Different “Q&P” Parameters on the Mechanical Properties of AHSS

Borasi, Luciano January 2018 (has links)
In the present study, the influence of the quenching temperature and partitioning conditions (temperature and time) have been investigated on a 0.6%C-1.2%Mn-1.6%Si-1.75%Cr alloy. Maps of hardness, impact toughness and amount of retained austenite have been developed for three quenching temperatures as a function of partitioning temperature and partitioning time. Results demonstrate that, in this material, the carbon depletion of the martensite and the stabilization of austenite can be achieved significantly faster at high partitioning temperatures, promoting higher retained austenite fractions, lower hardness, and maximizing the energy absorbed in a Charpy V‑Notch test. In addition, the effect of the partitioning time was also analysed, presenting different behaviour at high and low partitioning temperatures. Whereas an increment of time at high partitioning temperatures (>400 ºC) leads to an austenite consumption, at low partitioning temperatures it is effective to retain a higher amount of austenite.  Furthermore, tensile properties are shown to be better than in conventional alloys utilized in industry. Whilst, for example, the AISI 52100 alloy achieves 2 GPa of tensile strength and 1‑2% of fracture deformation, in the present study the notable combination of 2.5 GPa of tensile strength and 5.7 % of fracture deformation was achieved in samples quenched until room temperature. Untempered martensite transformed during final cooling in samples quenched until higher temperatures was shown to be detrimental for tensile properties. A comparison between the Q&P process and the austempering process on this alloy has been carried out. Results reveal that the quenching and partitioning heat treatment is presented as a promising alternative to reach higher hardness (>700 HV) and similar specific wear rates in dry conditions performing a shorter heat treatment.    Finally, a complementary study about the effect of micro-segregation on the Q&P process and an optimization method to minimize the inhomogeneity of the structure by a correct selection of the quenching temperature were established.
4

Étude des mécanismes d'enrichissement en carbone de l'austénite dans les aciers duplex Q&P à très haute résistance / Study of the mechanisms of carbon enrichment in austenite in Q&P steels

Aoued, Samy 10 October 2019 (has links)
L’allègement dans le secteur de l’automobile revête un enjeu important du fait de normes d’émission de CO2 de plus en plus drastiques, de la nécessité de réduire la consommation en carburant des véhicules et d’une aspiration sociétale à une économie « plus verte ». Pour répondre à ces défis et dans un souci de sécurité et de contrôle des coûts, l’industrie automobile étudie actuellement la possibilité de développer et de produire une 3ème génération d'aciers à très haute résistance. Ils résultent de traitements thermomécaniques généralement innovants, possèdent des microstructures complexes et des propriétés mécaniques améliorées. Le procédé de Quenching and Partitioning (Q&P) est le traitement le plus prometteur, il consiste en une trempe sous la température de début de transformation martensitique Ms, puis, d'un réchauffage et d'un maintien au-dessus de la température initiale de trempe (QT). L'étape de maintien est appelée "étape de partition", car un enrichissement en carbone de l'austénite est attendu. Les propriétés mécaniques exceptionnelles des aciers Q&P sont dues à leur microstructure duplexe complexe : de très fins îlots d'austénite résiduelle imbriqués dans une matrice martensitique revenue et/ou fraîche. Bien que les mécanismes d'enrichissement en carbone de l'austénite résiduelle lors de l'étape de partition soient encore débattus dans la littérature, il existe des preuves tangibles qui attestent d’un phénomène de partition du carbone de la martensite vers l’austénite. Cependant, la formation de bainite et de carbures dans la martensite soulève la question de l’influence de ces réactions et de leurs interactions sur les mécanismes et les cinétiques d’enrichissement en carbone de l'austénite. Il s'agit clairement d'un sujet d'intérêt puisque les propriétés mécaniques de ces aciers reposent principalement sur la teneur en carbone des îlots d’austénite.Cette thèse qui repose sur une approche expérimentale multi-échelle couplée à une approche théorique en champ moyen, a pour ambition d’apporter des éléments de réponse aux mécanismes d’enrichissement en carbone de l’austénite dans un aciers duplex Q&P à très haute résistance de composition Fe-0,3 C-2,5Mn-1,5Si... / The need to reduce the fuel consumption of vehicles while increasing safety led the automotive industry to develop a 3rd generation of Advanced High Strength Steels. Such steels combine innovative processing routes, complex microstructures, improved mechanical properties and are a possible response in vehicle lightweighting. The Quenching and Partitioning (Q&P) process is the most promising route and involves quenching below the martensite start temperature followed by a reheatingand ageing above the initial quench temperature (QT). The ageing step is termed “partitioning step” since carbon enrichment in austenite is expected to occur during this stage. The exceptional mechanical properties of Q&P steels come from their complex duplex microstructure: very fine austenite island retained at room temperature embedded in both recovered and fresh martensite. Although the mechanisms of carbon enrichment in retained austenite during the partitioning step are still debated,strong evidences of carbon partitioning from martensite to austenite exist. However, both the formation of bainite and carbides into martensite raise the question of the effects of competitive reactions on the carbon enrichment in austenite. It is clearly a topic of interest since the benefits of such a treatment in terms of improved mechanical properties depends strongly on the austenite stability and thus on the level of carbon enrichment in austenite during the partitioning step.This thesis aims at combining an innovative multiscale experimental methodology with an original theoretical approach providing a unique opportunity to give some clarifications regarding the microstructure evolution and the mechanisms of carbon enrichment into austenite. After having determined the optimum Q&P parameters using dilatometric and XRD measurements, a Q&P treatment at three different QT (260, 230 and 200°C) and at a partitioning temperature of 400°C was applied to a model Fe-0.3 C-2.5Mn-1.5Si steel. The dilatometric data combined with an SEM image analysis study showed that bainite forms during the partitioning step. The presence of bainite was also confirmed by in-situ High Energy X-Ray Diffraction. While bainite was shown to appear as carbide free laths, tempered martensite showed an advanced state of intra-lath precipitation. The combination of atom probe tomography (APT) and TEM technics showed that theses carbides are transitional andboth η and ε carbides were observed. Their carbon content ranged from 20.0 to 27.7 at.%. APT measurements also highlighted carbon segregation on martensite defects during the initial quench and calculation of the evolution of the carbon excess concentration on laths boundaries suggest that desegregation occurs along the Q&P treatment. In-situ HEXRD permitted to follow the austenite lattice parameter evolution and it was shown that austenite is subjected to a sequence of tensile andcompression state induced by the formation of martensite. A model for the coefficient of thermal expansion of austenite taking into account its stress state was successfully developed. The evolutions of carbon content into austenite for the three QT were determined. Surprisingly the carbon enrichment into austenite was shown not to depend on QT. It was also shown that the increase of carbon content in austenite results from both carbon partitioning and bainite contributions. Lastly, an originaltheoretical approach was developed. It was evidenced that bainite continues to form while partitioning process is rapidly completed, thus bainite transformation controls the maximum austenite carbon enrichment at 400°C, independently of QT. The contribution of partitioning from martensite was shown to be larger with decreasing QT. The developed model successfully described the experimentally observed phase transformations and austenite carbon enrichment by taking into account theinteractions between carbon partitioning, bainite transformation and carbide precipitation.
5

Têmpera e partição de ferros fundidos nodulares: microestrutura e cinética. / Quenching and partitioning of ductile cast irons: microstructure and kinetics.

Arthur Seiji Nishikawa 01 October 2018 (has links)
Este trabalho está inserido em um projeto que procura estudar a viabilidade técnica da aplicação de um relativamente novo conceito de tratamento térmico, chamado de Têmpera e Partição (T&P), como alternativa para o processamento de ferros fundidos nodulares com alta resistência mecânica. O processo T&P tem por objetivo a obtenção de microestruturas multifásicas constituídas de martensita e austenita retida, estabilizada em carbono. A martensita confere elevada resistência mecânica, enquanto a austenita confere ductilidade. No processo T&P, após a austenitização total ou parcial da liga, o material é temperado até uma temperatura de têmpera TT entre as temperaturas Ms e Mf para produzir uma mistura controlada de martensita e austenita. Em seguida, na etapa de partição, o material é mantido isotermicamente em uma temperatura igual ou mais elevada (denominada temperatura de partição TP) para permitir a partição de carbono da martensita para a austenita. O carbono em solução sólida diminui a temperatura Ms da austenita, estabilizando-a à temperatura ambiente. O presente trabalho procurou estudar aspectos de transformações de fases -- com ênfase na evolução microestrutural e cinética das reações -- do tratamento térmico de Têmpera e Partição (T&P) aplicado a uma liga de ferro fundido nodular (Fe-3,47%C-2,47%Si-0,2%Mn). Tratamentos térmicos consistiram de austenitização a 880 oC por 30 min, seguido de têmpera a 140, 170 e 200 oC e partição a 300, 375 e 450 oC por até 2 h. A caracterização microestrutural foi feita por microscopia óptica (MO), eletrônica de varredura (MEV), difração de elétrons retroespalhados (EBSD) e análise de microssonda eletrônica (EPMA). A análise cinética foi feita por meio de ensaios de dilatometria de alta resolução e difração de raios X in situ usando radiação síncrotron. Resultados mostram que a ocorrência de reações competitivas -- reação bainítica e precipitação de carbonetos na martensita -- é inevitável durante a aplicação do tratamento T&P à presente liga de ferro fundido nodular. A cinética da reação bainítica é acelerada pela presença da martensita formada na etapa de têmpera. A reação bainítica acontece, a baixas temperaturas, desacompanhada da precipitação de carbonetos e contribui para o enriquecimento em carbono, e consequente estabilização, da austenita. Devido à precipitação de carbonetos na martensita, a formação de ferrita bainítica é o principal mecanismo de enriquecimento em carbono da austenita. A microssegregação proveniente da etapa de solidificação permanece no material tratado termicamente e afeta a distribuição da martensita formada na etapa de têmpera e a cinética da reação bainítica. Em regiões correspondentes a contornos de célula eutética são observadas menores quantidades de martensita e a reação bainítica é mais lenta. A microestrutura final produzida pelo tratamento T&P aplicado ao ferro fundido consiste de martensita revenida com carbonetos, ferrita banítica e austenita enriquecida estabilizada pelo carbono. Adicionalmente, foi desenvolvido um modelo computacional que calcula a redistribuição local de carbono durante a etapa de partição do tratamento T&P, assumindo os efeitos da precipitação de do crescimento de placas de ferrita bainítica a partir da austenita. O modelo mostrou que a cinética de partição de carbono da martensita para a austenita é mais lenta quando os carbonetos precipitados são mais estáveis e que, quando a energia livre dos carbonetos é suficientemente baixa, o fluxo de carbono acontece da austenita para a martensita. A aplicação do modelo não se limita às condições estudadas neste trabalho e pode ser aplicada para o planejamento de tratamentos T&P para aços. / The present work belongs to a bigger project whose main goal is to study the technical feasibility of the application of a relatively new heat treating concept, called Quenching and Partitioning (Q&P), as an alternative to the processing of high strength ductile cast irons. The aim of the Q&P process is to obtain multiphase microstructures consisting of martensite and carbon enriched retained austenite. Martensite confers high strength, whereas austenite confers ductility. In the Q&P process, after total or partial austenitization of the alloy, the material is quenched in a quenching temperature TQ between the Ms and Mf temperatures to produce a controlled mixture of martensite and austenite. Next, at the partitioning step, the material is isothermally held at a either equal or higher temperature (so called partitioning temperature TP) in order to promote the carbon diffusion (partitioning) from martensite to austenite. The present work focus on the study of phase transformations aspects -- with emphasis on the microstructural evolution and kinetics of the reactions -- of the Q&P process applied to a ductile cast iron alloy (Fe-3,47%C-2,47%Si-0,2%Mn). Heat treatments consisted of austenitization at 880 oC for 30 min, followed by quenching at 140, 170, and 200 oC and partitioning at 300, 375 e 450 oC up to 2 h. The microstructural characterization was carried out by optical microscopy (OM), scanning electron microscopy (SEM), backscattered diffraction (EBSD), and electron probe microanalysis (EPMA). The kinetic analysis was studied by high resolution dilatometry tests and in situ X-ray diffraction using a synchrotron light source. Results showed that competitive reactions -- bainite reaction and carbides precipitation in martensite -- is unavoidable during the Q&P process. The bainite reaction kinetics is accelerated by the presence of martensite formed in the quenching step. The bainite reaction occurs at low temperatures without carbides precipitation and contributes to the carbon enrichment of austenite and its stabilization. Due to carbides precipitation in martensite, growth of bainitic ferrite is the main mechanism of carbon enrichment of austenite. Microsegregation inherited from the casting process is present in the heat treated material and affects the martensite distribution and the kinetics of the bainite reaction. In regions corresponding to eutectic cell boundaries less martensite is observed and the kinetics of bainite reaction is slower. The final microestructure produced by the Q&P process applied to the ductile cast iron consists of tempered martensite with carbides, bainitic ferrite, and carbon enriched austenite. Additionally, a computational model was developed to calculate the local kinetics of carbon redistribution during the partitioning step, considering the effects of carbides precipitation and bainite reaction. The model showed that the kinetics of carbon partitioning from martensite to austenite is slower when the tempering carbides are more stable and that, when the carbides free energy is sufficiently low, the carbon diffuses from austenite to martensite. The model is not limited to the studied conditions and can be applied to the development of Q&P heat treatments to steels.
6

Têmpera e partição de ferros fundidos nodulares: microestrutura e cinética. / Quenching and partitioning of ductile cast irons: microstructure and kinetics.

Nishikawa, Arthur Seiji 01 October 2018 (has links)
Este trabalho está inserido em um projeto que procura estudar a viabilidade técnica da aplicação de um relativamente novo conceito de tratamento térmico, chamado de Têmpera e Partição (T&P), como alternativa para o processamento de ferros fundidos nodulares com alta resistência mecânica. O processo T&P tem por objetivo a obtenção de microestruturas multifásicas constituídas de martensita e austenita retida, estabilizada em carbono. A martensita confere elevada resistência mecânica, enquanto a austenita confere ductilidade. No processo T&P, após a austenitização total ou parcial da liga, o material é temperado até uma temperatura de têmpera TT entre as temperaturas Ms e Mf para produzir uma mistura controlada de martensita e austenita. Em seguida, na etapa de partição, o material é mantido isotermicamente em uma temperatura igual ou mais elevada (denominada temperatura de partição TP) para permitir a partição de carbono da martensita para a austenita. O carbono em solução sólida diminui a temperatura Ms da austenita, estabilizando-a à temperatura ambiente. O presente trabalho procurou estudar aspectos de transformações de fases -- com ênfase na evolução microestrutural e cinética das reações -- do tratamento térmico de Têmpera e Partição (T&P) aplicado a uma liga de ferro fundido nodular (Fe-3,47%C-2,47%Si-0,2%Mn). Tratamentos térmicos consistiram de austenitização a 880 oC por 30 min, seguido de têmpera a 140, 170 e 200 oC e partição a 300, 375 e 450 oC por até 2 h. A caracterização microestrutural foi feita por microscopia óptica (MO), eletrônica de varredura (MEV), difração de elétrons retroespalhados (EBSD) e análise de microssonda eletrônica (EPMA). A análise cinética foi feita por meio de ensaios de dilatometria de alta resolução e difração de raios X in situ usando radiação síncrotron. Resultados mostram que a ocorrência de reações competitivas -- reação bainítica e precipitação de carbonetos na martensita -- é inevitável durante a aplicação do tratamento T&P à presente liga de ferro fundido nodular. A cinética da reação bainítica é acelerada pela presença da martensita formada na etapa de têmpera. A reação bainítica acontece, a baixas temperaturas, desacompanhada da precipitação de carbonetos e contribui para o enriquecimento em carbono, e consequente estabilização, da austenita. Devido à precipitação de carbonetos na martensita, a formação de ferrita bainítica é o principal mecanismo de enriquecimento em carbono da austenita. A microssegregação proveniente da etapa de solidificação permanece no material tratado termicamente e afeta a distribuição da martensita formada na etapa de têmpera e a cinética da reação bainítica. Em regiões correspondentes a contornos de célula eutética são observadas menores quantidades de martensita e a reação bainítica é mais lenta. A microestrutura final produzida pelo tratamento T&P aplicado ao ferro fundido consiste de martensita revenida com carbonetos, ferrita banítica e austenita enriquecida estabilizada pelo carbono. Adicionalmente, foi desenvolvido um modelo computacional que calcula a redistribuição local de carbono durante a etapa de partição do tratamento T&P, assumindo os efeitos da precipitação de do crescimento de placas de ferrita bainítica a partir da austenita. O modelo mostrou que a cinética de partição de carbono da martensita para a austenita é mais lenta quando os carbonetos precipitados são mais estáveis e que, quando a energia livre dos carbonetos é suficientemente baixa, o fluxo de carbono acontece da austenita para a martensita. A aplicação do modelo não se limita às condições estudadas neste trabalho e pode ser aplicada para o planejamento de tratamentos T&P para aços. / The present work belongs to a bigger project whose main goal is to study the technical feasibility of the application of a relatively new heat treating concept, called Quenching and Partitioning (Q&P), as an alternative to the processing of high strength ductile cast irons. The aim of the Q&P process is to obtain multiphase microstructures consisting of martensite and carbon enriched retained austenite. Martensite confers high strength, whereas austenite confers ductility. In the Q&P process, after total or partial austenitization of the alloy, the material is quenched in a quenching temperature TQ between the Ms and Mf temperatures to produce a controlled mixture of martensite and austenite. Next, at the partitioning step, the material is isothermally held at a either equal or higher temperature (so called partitioning temperature TP) in order to promote the carbon diffusion (partitioning) from martensite to austenite. The present work focus on the study of phase transformations aspects -- with emphasis on the microstructural evolution and kinetics of the reactions -- of the Q&P process applied to a ductile cast iron alloy (Fe-3,47%C-2,47%Si-0,2%Mn). Heat treatments consisted of austenitization at 880 oC for 30 min, followed by quenching at 140, 170, and 200 oC and partitioning at 300, 375 e 450 oC up to 2 h. The microstructural characterization was carried out by optical microscopy (OM), scanning electron microscopy (SEM), backscattered diffraction (EBSD), and electron probe microanalysis (EPMA). The kinetic analysis was studied by high resolution dilatometry tests and in situ X-ray diffraction using a synchrotron light source. Results showed that competitive reactions -- bainite reaction and carbides precipitation in martensite -- is unavoidable during the Q&P process. The bainite reaction kinetics is accelerated by the presence of martensite formed in the quenching step. The bainite reaction occurs at low temperatures without carbides precipitation and contributes to the carbon enrichment of austenite and its stabilization. Due to carbides precipitation in martensite, growth of bainitic ferrite is the main mechanism of carbon enrichment of austenite. Microsegregation inherited from the casting process is present in the heat treated material and affects the martensite distribution and the kinetics of the bainite reaction. In regions corresponding to eutectic cell boundaries less martensite is observed and the kinetics of bainite reaction is slower. The final microestructure produced by the Q&P process applied to the ductile cast iron consists of tempered martensite with carbides, bainitic ferrite, and carbon enriched austenite. Additionally, a computational model was developed to calculate the local kinetics of carbon redistribution during the partitioning step, considering the effects of carbides precipitation and bainite reaction. The model showed that the kinetics of carbon partitioning from martensite to austenite is slower when the tempering carbides are more stable and that, when the carbides free energy is sufficiently low, the carbon diffuses from austenite to martensite. The model is not limited to the studied conditions and can be applied to the development of Q&P heat treatments to steels.
7

ON THE RELATIONSHIP BETWEEN MICROSTRUCTURE DEVELOPMENT AND MECHANICAL PROPERTIES IN Q&P STEELS

Huyghe, Pierre 08 November 2018 (has links) (PDF)
The Quenching and Partitioning (Q&P) heat treatment has been proposed in the early 2000s to produce cold-rolled sheets combining high-strength and formability for the automotive market. Q&P consists, first, of an interrupted quench between the martensite-start temperature (Ms) and the martensite-finish temperature (Mf) from intercritical annealing or full austenitization in order to form controlled fractions of martensite. This is followed by a partitioning step in order to stabilize the untransformed austenite through carbon enrichment. In order to maximize the carbon transfer from martensite to austenite, the use of specific alloying elements and the design of appropriate Q&P parameters are required to eliminate or minimize competing phenomena such as carbide formation and austenite decomposition. The final quenched and partitioned microstructure, using full austenitization, ideally consists of carbon-depleted lath martensite and significant fractions of retained austenite providing an improved combination of strength and ductility. Hence, the transformation of retained austenite upon straining at room temperature (TRIP effect) provides supplementary work-hardening and eventually improves the ductility. In the present work, Quenching and Partitioning (Q & P) heat treatments were carried out in a quench dilatometeron a 0.2 wt% carbon steel. The microstructure evolution of the Q & P steels was characterized usingdilatometry, SEM, EBSD and XRD. The martensitic transformation profile was analyzed in order to estimate thefraction of martensite formed at a given temperature below the martensite start temperature Ms. Q & P wasshown to be an effective way to stabilize retained austenite at room temperature. However, the measuredaustenite fractions after Q & P treatments showed significant differences when compared to the calculated valuesconsidering ideal partitioning conditions. Indeed, the measured austenite fractions were found to be less sensitiveto the quench temperature and were never larger than the ideal predicted maximum fraction. Competitivereactions such as austenite decomposition into bainite and carbide precipitation were found to occur in thepresent work.Furthermore, a broad range of mechanical properties was obtained when varying the quenching temperaturesand partitioning times. The direct contributions between Q & P microstructural constituents -such as retainedaustenite as well as tempered/fresh martensite- and resulting mechanical properties were scrutinized. This wascritically discussed and compared to quenching and austempering (QAT) which is a more conventional processingroute of stabilizing retained austenite at room temperature. Finally, Q & P steels were shown to exhibit aninteresting balance between strength and ductility. The achievement of this interesting combination of mechanicalproperties was reached for much shorter processing times compared to QAT steels. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
8

Estudo das microestruturas e propriedades obtidas por tratamentos intercrí­ticos e por tratamento de estampagem a quente em um aço Dual Phase classe 600. / Study of the microstructures and properties of Dual Phase DP 600 steel after intercritical heat treatments and hot stamping.

Andrade Centeno, Dany Michell 12 November 2018 (has links)
Novos tratamentos térmicos e a otimização dos processos de conformação têm contribuído para o desenvolvimento de microestruturas multifásicas com excelente combinação de ductilidade e resistência mecânica. Parte dessa melhoria depende da presença de austenita retida, de sua estabilidade e fração volumétrica. O presente trabalho tem como objetivo caracterizar a evolução da microestrutura e comportamento das propriedades mecânicas do aço dual phase classe 600 (DP 600), após tratamentos térmicos intercríticos de têmpera e partição (Q&P) e reversão da martensita, assim como tratamentos termomecânicos de simulação física da estampagem a quente (HS), variando a deformação em 10% (HS 10) e 30% (HS 30), e combinando estampagem a quente com subsequente tratamento de têmpera e partição (HSQ&P). Duas condições microestruturais de partida diferentes foram utilizadas nos tratamentos térmicos. Para os tratamentos térmicos e termomecânicos Q&P, HS e HSQ&P a microestrutura de partida foi a bifásica (ferrita e martensita). Já para o tratamento térmico de reversão a microestrutura de partida foi modificada para martensítica. Os tratamentos puramente térmicos foram realizados no dilatômetro Bähr do Laboratório de Transformações de Fase (LTF); entretanto, os tratamentos termomecânicos foram feitos no simulador termomecânico Gleeble®, acoplado à linha de difração de raios X (XTMS) do Laboratório Nacional de Nanotecnologia (LNNano). A análise microestrutural foi feita com suporte de microscopia ótica (MO) e eletrônica de varredura (MEV-FEG), EBSD, e difração de raios X in situ e convencional. Avaliaram-se as propriedades mecânicas por ensaio de tração em corpos de prova sub-size e endentação instrumentada. As amostras Q&P, HS e HSQ&P foram submetidas a ensaios exploratórios de resistência ao trincamento por hidrogênio (HIC) segundo a norma NACE TM0284. Adicionalmente, foi feita a medição de hidrogênio ancorado na microestrutura estudada, após tratamentos, utilizando a técnica de dessorção térmica disponível no LNNano. A avaliação das mudanças microestruturais e de propriedades mecânicas após tratamentos térmicos foram discutidas separadamente para cada microestrutura de partida. Os resultados dos processos Q&P, HS e HSQ&P no aço, mostraram que a evolução da microestrutura levou a formação de uma microestrutura mais complexa do que a microestrutura ferrítico-martensítica simples do material como recebido. A complexa microestrutura é dada pela formação de ferrita epitaxial durante a etapa de tratamento intercrítico, ferrita induzida por deformação (DIFT) na etapa de deformação em alta temperatura e bainita na etapa de partição. Essa mistura microestrutural levou a variações na relação das frações volumétricas de ferrita e martensita em relação às frações iniciais do aço, assim como na presença de austenita retida e sua estabilidade. Com base nos resultados é possível afirmar que o processo Q&P produz um aumento nas propriedades mecânicas do material. Por outro lado, após o ensaio de HIC todas as amostras apresentaram susceptibilidade ao trincamento; contudo, a severidade do dano foi maior nas amostras deformadas HS 30. Os ensaios preliminares de dessorção mostraram maior aprisionamento de hidrogênio em armadilhas reversíveis nas amostras HSQ&P e irreversíveis na amostra HS 30. Na segunda parte, os resultados do tratamento de reversão sugerem que, em geral, a microestrutura do aço processado compreende uma morfologia em ripas de ferrita intercrítica, martensita e filmes de austenita retida. A maior temperatura de reversão intercrítica resultou em menor fração de ferrita intercrítica. Por outro lado, a temperatura intercrítica de reversão influenciou significativamente a estabilidade da austenita retida. Uma alta fração de austenita retida foi obtida a uma temperatura ligeiramente acima da temperatura Ac1. Um segundo ciclo de reversão promoveu a difusão de C e Mn para a austenita revertida tornando-a mais estável a temperatura ambiente. / Novel Heat Treatments and the optimization of the forming processes have contributed to the development of multiphase microstructures with attractive combinations of ductility and mechanical resistance. This improvement partially depends on the presence, stability and volume fraction of retained austenite. The objective of this work is to characterize the evolution of the microstructure and mechanical properties of a class 600 dual phase steel (DP 600), as a function of the thermal and thermomechanical history. Two initial microstructures were used in this study. A ferritic-martensitic microstructure was used as the starting condition for inter-critical heat treatments followed by quenching and partitioning (Q&P) and for the thermomechanical simulations of the hot stamping (HS) process. The latter applying deformations of 10% (HS 10) and 30% (HS 30) combining hot stamping with subsequent quenching and partition (HSQ&P). The thermal cycles were performed in a Bähr dilatometer at the Laboratory of Phase Transformations (LTF), then duplicated using a Gleeble® thermomechanical simulator, coupled to the X-ray Scattering and Thermo-mechanical Simulation beamline (XTMS) at the Brazilian Nanotechnology National Laboratory (LNNano). The microstructural analysis was performed using optical microscopy (MO) and scanning electron (SEM-FEG), Electron Backscatter Diffraction (EBSD), and in situ and conventional X-ray diffraction. The mechanical properties were evaluated by tensile testing on sub-size specimens and by instrumented macro-nano indentation tests. The evolution of the microstructure and mechanical properties for each starting microstructure was discussed separately. The Q&P, HS and HSQ&P samples were submitted to exploratory tests of resistance to hydrogen induced cracking (HIC) according to NACE TM0284. Additionally, hydrogen measurements were performed for the microstructures obtained after Q&P and HDQ&P using the thermal desorption technique at LNNano. After Q&P, HS and HSQ&P, the resultant microstructure was more complex than the as-received ferritic-martensitic condition. Such complexity comes from the formation of epitaxial ferrite from the former ferritic phase during the intercritical treatment step, the deformation induced ferrite (DIFT) and the bainite formation during the partitioning step. This led to variations in the volumetric fraction of ferrite and martensite in relation to the initial fractions of the as-received condition, as well as the presence of retained austenite and its stability upon cooling. The Q&P process increased the mechanical properties of the material. On the other hand, all microstructures showed susceptibility to hydrogen cracking after 72 hours of H2S exposure tests. However, the damage was more severe for the HS samples with 30% of deformation. The preliminary desorption tests showed greater hydrogen trapping in reversible traps after HSQ&P and in irreversible traps for the HS with 30% deformation. A second set of experiments was conducted for a different microstructure consisting of a fully martensitic matrix as the initial condition. After intercritical reversion, the resultant microstructure comprised intercritical lath-like ferrite, martensite laths and retained austenite films. The higher the intercritical reversion temperature, the smaller the fraction of intercritical ferrite. On the other hand, the transformation temperature significantly influenced the stability of the retained austenite. The highest fraction of retained austenite was obtained when the transformation occurred slightly above the Ac1 temperature. A double intercritical reversion cycle promoted the diffusion of C and Mn to the reversed austenite making it more stable upon cooling to room temperature, leading to a better combination of strength and ductility.
9

Análise numérica e experimental de um aço TRIP submetido aos processos de estampagem a quente e têmpera e partição (Q&P). / Numerical and experimental analysis of a trip steel submitted to hot stamping and quenching and partitioning (Q&P) processes.

Echeverri, Edwan Anderson Ariza 21 December 2016 (has links)
O desenvolvimento de métodos de simulação física e numérica tem criado novas possibilidades de otimização dos processos relacionados à estampagem com inclusão de processos industriais reais. Portanto, recorrendo à aplicação destes métodos de análise, é possível avaliar a transformação mecânica e as transformações de fase que ocorrem no material e prever as interações entre as propriedades dos materiais no processo de conformação, o comportamento constitutivo do material, as variáveis de otimização do processo, bem como a previsão das tensões e deformações a fim de estabelecer a melhor relação material-processo-desempenho. A introdução e crescente utilização de aços avançados de alta resistência (AHSS) em aplicações automotivas exige uma maior compreensão dos fenômenos físicos envolvidos no processamento termomecânico a fim de otimizar a performance da peça final fabricada. O presente trabalho teve como objetivo avaliar experimentalmente o processo de estampagem a quente, com posterior tratamento térmico de têmpera e partição e analisar as microestruturas formadas e suas propriedades mecânicas. A formação de microestruturas durante o processo de estampagem a quente e de têmpera e partição foi avaliada neste trabalho por simulação física em simulador termomecânico Gleeble, acoplado à uma linha de difração de raios X (XTMS) de feixe de luz síncrotron no Laboratório Nacional de Nanotecnologia (LNNano). Foram avaliadas a partição do carbono, a estabilidade térmica da austenita retida e a formação de microconstituintes resultantes da transformação da austenita durante resfriamento forçado (têmpera), seguido de partição de carbono em patamares isotérmicos. Foram utilizadas técnicas de caracterização com apoio de microscopia eletrônica (MEV-FEG e STEM), EBSD, tomografia de sonda atômica (APT) e avaliação de propriedades mecânicas por ensaios de tração e indentação instrumentada. A análise numérica foi realizada por meio do método dos elementos finitos (MEF) e por elementos finitos orientada a objetos (OOF, Object Oriented Finite Element Analysis) visando estabelecer correlações entre microestrutura e propriedades mecânicas, comparando com resultados experimentais. Os resultados e conclusões obtidos no projeto, além de possibilitarem a identificação dos mecanismos fundamentais de geração de microestruturas durante o processo, auxiliam no projeto de aços AHSS estampados a quente, usados principalmente na indústria automobilística, na busca pela redução do consumo de combustível, através da redução do peso, e pelo aumento da segurança dos passageiros. / The development of numerical and physical simulation methods has created new possibilities regarding the optimization of metal forming processes, taking into account real industrial forming processes. Therefore, by applying such methods of analysis it is now possible to assess the material phase transformations and predict the interactions between material properties and the forming process, the constitutive behavior of the material, and optimize process variables as well as predicting the best material-process-performance relationship. The increasing usage of Advanced High Strength Steels (AHSS) in automotive applications demands a better insight of the physical phenomena involved in the thermomechanical processing in order to optimize the performance of the final manufactured part. Thermomechanical simulation of the hot stamping, quenching and partitioning process was carried out in a Gleeble machine coupled to the XTMS Synchrotron X-ray diffraction line at the National Nanotechnology Laboratory (LNNano). Carbon partitioning, carbon contents, and amount of retained austenite, martensite, bainite and ferrite was assessed online during the experiments. In addition, characterization techniques by optical, electron microscopy (FEG-SEM and STEM), EBSD, and Atom Probe Tomography (APT) were applied. Mechanical testing of subsize specimens of the processed steels was performed by means of tensile tests and macro and nanoindentation tests. The numerical analysis was performed using the finite element method (FEM) and object-oriented finite element technique (OOF). The results were compared with the experimental results of mechanical testing of specimens used in the thermomechanical simulations and with hot stamped sheets, where quenching and partitioning were carried out. The results and conclusions obtained in this project allow the identification of the fundamental mechanisms of the process, helping the design of the hot stamping process for AHSS steels used primarily in the automotive industry, seeking weight reduction to improve fuel economy and increased passenger safety.
10

Análise numérica e experimental de um aço TRIP submetido aos processos de estampagem a quente e têmpera e partição (Q&P). / Numerical and experimental analysis of a trip steel submitted to hot stamping and quenching and partitioning (Q&P) processes.

Edwan Anderson Ariza Echeverri 21 December 2016 (has links)
O desenvolvimento de métodos de simulação física e numérica tem criado novas possibilidades de otimização dos processos relacionados à estampagem com inclusão de processos industriais reais. Portanto, recorrendo à aplicação destes métodos de análise, é possível avaliar a transformação mecânica e as transformações de fase que ocorrem no material e prever as interações entre as propriedades dos materiais no processo de conformação, o comportamento constitutivo do material, as variáveis de otimização do processo, bem como a previsão das tensões e deformações a fim de estabelecer a melhor relação material-processo-desempenho. A introdução e crescente utilização de aços avançados de alta resistência (AHSS) em aplicações automotivas exige uma maior compreensão dos fenômenos físicos envolvidos no processamento termomecânico a fim de otimizar a performance da peça final fabricada. O presente trabalho teve como objetivo avaliar experimentalmente o processo de estampagem a quente, com posterior tratamento térmico de têmpera e partição e analisar as microestruturas formadas e suas propriedades mecânicas. A formação de microestruturas durante o processo de estampagem a quente e de têmpera e partição foi avaliada neste trabalho por simulação física em simulador termomecânico Gleeble, acoplado à uma linha de difração de raios X (XTMS) de feixe de luz síncrotron no Laboratório Nacional de Nanotecnologia (LNNano). Foram avaliadas a partição do carbono, a estabilidade térmica da austenita retida e a formação de microconstituintes resultantes da transformação da austenita durante resfriamento forçado (têmpera), seguido de partição de carbono em patamares isotérmicos. Foram utilizadas técnicas de caracterização com apoio de microscopia eletrônica (MEV-FEG e STEM), EBSD, tomografia de sonda atômica (APT) e avaliação de propriedades mecânicas por ensaios de tração e indentação instrumentada. A análise numérica foi realizada por meio do método dos elementos finitos (MEF) e por elementos finitos orientada a objetos (OOF, Object Oriented Finite Element Analysis) visando estabelecer correlações entre microestrutura e propriedades mecânicas, comparando com resultados experimentais. Os resultados e conclusões obtidos no projeto, além de possibilitarem a identificação dos mecanismos fundamentais de geração de microestruturas durante o processo, auxiliam no projeto de aços AHSS estampados a quente, usados principalmente na indústria automobilística, na busca pela redução do consumo de combustível, através da redução do peso, e pelo aumento da segurança dos passageiros. / The development of numerical and physical simulation methods has created new possibilities regarding the optimization of metal forming processes, taking into account real industrial forming processes. Therefore, by applying such methods of analysis it is now possible to assess the material phase transformations and predict the interactions between material properties and the forming process, the constitutive behavior of the material, and optimize process variables as well as predicting the best material-process-performance relationship. The increasing usage of Advanced High Strength Steels (AHSS) in automotive applications demands a better insight of the physical phenomena involved in the thermomechanical processing in order to optimize the performance of the final manufactured part. Thermomechanical simulation of the hot stamping, quenching and partitioning process was carried out in a Gleeble machine coupled to the XTMS Synchrotron X-ray diffraction line at the National Nanotechnology Laboratory (LNNano). Carbon partitioning, carbon contents, and amount of retained austenite, martensite, bainite and ferrite was assessed online during the experiments. In addition, characterization techniques by optical, electron microscopy (FEG-SEM and STEM), EBSD, and Atom Probe Tomography (APT) were applied. Mechanical testing of subsize specimens of the processed steels was performed by means of tensile tests and macro and nanoindentation tests. The numerical analysis was performed using the finite element method (FEM) and object-oriented finite element technique (OOF). The results were compared with the experimental results of mechanical testing of specimens used in the thermomechanical simulations and with hot stamped sheets, where quenching and partitioning were carried out. The results and conclusions obtained in this project allow the identification of the fundamental mechanisms of the process, helping the design of the hot stamping process for AHSS steels used primarily in the automotive industry, seeking weight reduction to improve fuel economy and increased passenger safety.

Page generated in 0.148 seconds