• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Capacité photosynthétique du microphytobenthos des vasières intertidales de la Baie de l'Aiguillon (Côte atlantique, France) et des lagunes non-tidales de faible profondeur de la Baie de Puck (Mer Baltique, Pologne) / Photosynthetic performance of microphytobenthos from intertidal mudflats in Aiguillon Bay (Atlantic coast, France) and non-tidal coastal shallows of Puck Bay (Baltic Sea, Poland)

Pniewski, Filip Franciszek 05 July 2010 (has links)
Dans les écosystèmes littoraux, les communautés microphytobenthiques sont soumises à des conditions environnementales qui peuvent être extrêmes en particulier en ce qui concerne l'intensité lumineuse. Les mécanismes de protection mis en place dépendent étroitement du type d'habitat où se développent ces communautés et cette thèse a pour objectifs d'analyser les caractéristiques de l'activité photosynthétique et les mécanismes de protection développés par des assemblages microphytobenthiques dans deux écosystèmes littoraux très différents : les vasières intertidales atlantiques de la Baie de L'Aiguillon (France) et la lagune côtière non tidale de Puck Bay dans la Mer Baltique (Władysławowo, Pologne). Pour réaliser ces objectifs, trois études ont été réalisées : (1) la description des communautés microphytobenthiques, (2) la caractérisation de leur activité photosynthétique et (3) l'analyse des mécanismes de photoinhibition et de photoprotection.La structure taxonomique du microphytobenthos a été décrite en se basant sur des observations en microscopie optique et sur la mesure des caractéristiques des pigments photosynthétiques par chromatographie liquide à haute performance (HPLC). L'activité photosynthétique a été étudiée par des méthodes de microrespirométrie volumétrique et de spectrofluorométrie de la chlorophylle a. Les mécanismes de photoinhibition et de photoprotection ont été étudiés par fluorométrie en modulation d'amplitude pulsée (PAM).Les résultats obtenus nous ont permis de montrer que :1) Les communautés atlantiques sont fortement dominées par des diatomées épipéliques, alors que le microphytobenthos de la Mer Baltique est plus diversifié et comporte, outre des diatomées, une large part de cyanobactéries,2) Les microphytobenthos atlantique est bien acclimaté à des valeurs d'intensités lumineuses plutôt faibles, alors que les communautés de la Mer Baltique ont encore une bonne activité photosynthétique à de fortes irradiances,3) Les diatomées atlantiques présentent une plus forte photoinhibition que les microalgues de la Baltique,4) L'activité photosynthétique des communautés microphytobenthiques non perturbées montre un des rythmes circadien et tidal, qui semblent être contrôlés par des facteurs endogènes, qui mettent en jeu des adaptations comportementales comme la migration verticale pour les diatomées atlantiques,5) En ce qui concerne le microphytobenthos de la Mer Baltique, qui n'a pas de capacité migratoire, la photoprotection est assurée en premier lieu par la mise en jeu de processus physiologiques. Nous avons pu montrer la très grande flexibilité du photsystème PSII qui est capable de suivre très rapidement les changements à court terme de lumière ambiante. / The scope of this thesis includes the characteristics and comparison of photosynthetic activity and photoprotection mechanisms of microphytobenthos assemblages inhabiting the Atlantic intertidal mudflats of Aiguillon Bay (Esnandes, France) and the littoral zone of the Baltic Sea in non-tidal Puck Bay (Władysławowo, Poland). In order to accomplish the main aims of the work the following tasks were carried out: (1) characterization of microphytobenthic assemblages; (2) characterization of their photosynthetic activity and (3) description of photoinhibition and photoprotective mechanisms. The structure of microphytobenthos was described based on observation of the material in light microscope (LM) and through the characteristics of photosynthetic pigments using high performance liquid chromatography (HPLC). Photosynthetic activity was described using various methods including classical (volumetric micro-respirometer) and modern (chlorophyll a fluorescence) ones. In addition, the measurements of variable fluorescence were also used to study photoinhibition and photoprotective mechanisms. Based on the obtained results it was stated that:1.) the Atlantic assemblages were strongly dominated by epipelic diatoms, while the Baltic microphytobenthos was more diverse and cyanobacteria, next to diatoms, were also very important component,2.) it was shown that the Atlantic microphytobenthos was well acclimated to rather low light intensities, while the Baltic assemblages showed good utilization of higher irradiance,3.) the Atlantic diatoms were more susceptible to photoinhibition than the Baltic microalgae,4.) the photosynthetic activity described for the undisturbed microphytobenthos communities revealed circadian and circatidal rhythms, which seemed to be controlled by endogenous factors, supporting diatoms’ behavioural adaptations i.e., vertical migration,5.) in case of the Baltic microphytobenthos, the lack of the ability to move caused their physiological processes the first line of defence against excess irradiances. The analysis revealed extreme flexibility of PSII which was able to follow rapidly the short-term changes in ambient light
2

Étude du mécanisme de photoprotection lié à l’Orange Carotenoid Protein et ses homologues chez les cyanobactéries / Photoprotective mechanism related to the Orange Carotenoid Protein and paralogs in cyanobacteria

Wilson, Flore Adjélé 02 December 2016 (has links)
La lumière est essentielle pour les organismes photosynthétiques qui convertissent l'énergie solaire en énergie chimique. Cependant, la lumière devient dangereuse lorsque l'énergie qui arrive aux centres réactionnels de l'appareil photosynthétique, est en excès par rapport à l’énergie consommée. Dans ce cas, la chaîne de transport d'électrons photosynthétiques se réduit et les espèces réactives de l'oxygène (ROS) sont accumulées, notamment au niveau des deux photosystèmes, PSI et PSII. Les cyanobactéries ont développé des mécanismes photoprotecteurs qui diminuent l'énergie transférée au PSII atténuant ainsi l'accumulation de ROS et les dommages cellulaires, comme l’extinction non-photochimique (NPQcya) induite par la lumière bleue-verte. La soluble Orange Caroténoïde Protéine (OCPo) est essentielle pour ce mécanisme de photoprotection. L'OCP agit comme un senseur de l’intensité lumineuse et un inducteur de la dissipation d'énergie des phycobilisomes (PBS), l'antenne extra-membranaire des cyanobactéries. L'OCP est la première protéine photo-active à caroténoïde connue comme senseur. Une forte lumière bleue-verte déclenche des changements structurels dans l'OCPo qui induisent une forme active, rouge (OCPr). Le domaine N-terminal de l’OCPr, en s’intercalant entre les trimères externes d’un des cylindres basaux du cœur du PBS, augmente la dissipation thermique de l'énergie au niveau de l'antenne. L'OCP possède aussi une autre fonction : l’extinction de l’oxygène singulet, qui protège les cellules du stress oxydatif. Pour récupérer pleinement la capacité de l’antenne en faible lumière, une deuxième protéine est nécessaire, la "Fluorescence Recovery Protein" (FRP), dont le rôle est de détacher l’OCPr des PBS et d’accélérer sa reconversion en OCPo inactive. Ce manuscrit est un état des lieux des connaissances et des dernières avancées sur le mécanisme de NPQ associé à l'OCP dans les cyanobactéries. / Photosynthetic organisms use light energy from the sun in order to perform photosynthesis and to convert solar energy into chemical energy. Absorbance of excess light energy beyond what can be consumed in photosynthesis is dangerous for these organisms. Reactive oxygen species (ROS) are formed at the reaction centers and collecting light antennas inducing photooxidative damage which can lead to cell death. In cyanobacteria, one of these photoprotective mechanisms consists to reduce the amount of energy arriving to the reaction centers by thermal dissipation of the excess absorbed energy. Energy dissipation is accompanied by a decrease of Photosystem II-related fluorescence emission called non-photochemical quenching (NPQ). The soluble Orange Carotenoid Protein (OCPo) is essential for this photoprotective mechanism. The OCP is the first photo-active protein with a carotenoid known as light intensity sensor and acts as energy quencher of the phycobilisome (PB), the extra-membrane antenna of cyanobacteria. Structural changes occur when the OCPo absorbs a strong blue-green light leading to a red active form (OCPr). The N-terminal domain of OCPr burrows into the two external trimers of the core basal APC cylinders of the PB and increases thermal energy dissipation at the level of antenna. The OCP has an additional function in photoprotection as oxygen singlet quencher protecting cells from oxidative stress. Under low light conditions, to recover the full antenna capacity, a second protein is needed, the "Fluorescence Recovery Protein" (FRP), whose role is to detach the OCPr from the PB and accelerate its conversion into an inactive OCPo. In this manuscript, I will review the knowledge about the OCP, since the discovery of the mechanism and its characterization to the latest advances on the OCP-related-NPQ mechanism in cyanobacteria.
3

In vitro and in vivo characterisation of the OCP-related photoprotective mechanism in the cyanobacterium Synechocystis PCC6803 / Caractérisation in vitro et in vivo du mécanisme de photoprotection lié à l'OCP chez la cyanobactérie Synechocystis PCC6803

Gwizdala, Michal 16 November 2012 (has links)
De fortes illuminations peuvent être dommageables voire même létales pour les organismes photosynthétiques. Une des stratégies utilisées pour se protéger de tels effets délétères consiste à augmenter la dissipation thermique de l’énergie absorbée en excès au niveau des antennes. Chez les cyanobactéries une protéine photo-active, l’Orange Carotenoid Protein (OCP), contrôle ce processus. Une fois photo-activée l’OCP interagit avec le coeur des phycobilisomes (PBs, les antennes collectrices majoritaires chez les cyanobactéries) et déclenche le mécanisme, entrainant à la fois une baisse de l’énergie parvenant aux photosystèmes et une diminution de la fluorescence des PBs. L’énergie absorbée en excès est dissipée sous forme de chaleur. Pour que les PBs regagnent leur pleine capacité de transfert, une autre protéine nommée Fluorescence Recovery Protein (FRP) est requise. La FRP accélère la désactivation de l’OCP. Dans ce manuscrit, je vais présenter ma contribution à la compréhension du mécanisme de photo-protection lié à l’OCP.J’ai continué la caractérisation de la FRP chez Synechocystis PCC 6803, organisme modèle utilisé dans nos études. J’ai montré que la FRP de Synechocystis est plus courte que ce qui est indiqué dans Cyanobase, commençant en fait à la méthionine 26. Mes résultats ont aussi révélé que la photo-protection n’a lieu que lorsque le ratio OCP/FRP est élevé.Le plus grand aboutissement de ma thèse a été la reconstitution in vitro du mécanisme de photo-protection lié à l’OCP en utilisant de l’OCP, de la FRP et des PBs isolés. J’ai montré que la lumière est requise uniquement pour la photo-activation de l’OCP et que l’attachement de l’OCP au PB ne demande aucune illumination. Ce n’est qu’une fois photo-activée que l’OCP peut interagir avec le PB et entrainer la diminution de fluorescence (quenching). En se basant sur les résultats obtenus in vitro nous avons proposé un modèle moléculaire pour le mécanisme de photo-protection lié à l’OCP. Le système de reconstitution in vitro a été utilisé pour évaluer l’importance d’un pont salin conservé (Arg155-Glu244) entre les deux domaines de l’OCP et a révélé que celui-ci stabilise la forme inactive de l’OCP. La photo-activation entraine rupture du pont salin, l’Arg155 étant ensuite impliquée dans l’interaction entre OCP et PB. Le site d’attachement de l’OCP au coeur du PB a aussi été étudié en utilisant le système in vitro. Nos résultats ont montré que les émetteurs terminaux du PB ne sont pas requis et que le site primaire de quenching est un trimère d’allophycocyanine émettant à 660nm. Enfin nous avons étudié les propriétés des états excités du caroténoïde dans l’OCP photo-activée, montrant qu’un de ces états a un caractère de transfert de charge très prononcé et peut avoir un rôle principal dans la dissipation de l’énergie. Nos résultats suggèrent fortement que non seulement l’OCP induit dissipation de l’énergie absorbée sous forme de chaleur mais aussi que l’OCP agit directement comme dissipateur d’énergie. / Strong light can cause damage and be lethal for photosynthetic organisms. An increase of thermal dissipation of excess absorbed energy at the level of photosynthetic antenna is one of the processes protecting against deleterious effects of light. In cyanobacteria, a soluble photoactive carotenoid binding protein, Orange Carotenoid Protein (OCP) mediates this process. The photoactivated OCP by interacting with the core of phycobilisome (PB; the major photosynthetic antenna of cyanobacteria) triggers the photoprotective mechanism, which decreases the energy arriving at the reaction centres and PSII fluorescence. The excess energy is dissipated as harmless heat. To regain full PB capacity in low light intensities, theFluorescence Recovery Protein (FRP) is required. FRP accelerates the deactivation of OCP.In this work, I present my input in the understanding of the mechanism underlying the OCPrelated photoprotection. I further characterized the FRP of Synechocystis PCC6803, the model organism in our studies. I established that the Synechocystis FRP is shorter than what it was proposed in Cyanobase and it begins at Met26. Our results also revealed the great importance of a high OCP to FRP ratio for existence of photoprotection. The most remarkable achievement of this thesis is the in vitro reconstitution of the OCPrelated mechanism using isolated OCP, PB and FRP. I demonstrated that light is only needed for OCP photoactivation but OCP binding to PB is light independent. Only the photoactivated OCP is able to bind the PB and quench all its fluorescence. Based on our in vitro experiments we proposed a molecular model of OCP-related photoprotection. The in vitro reconstituted system was applied to examine the importance of a conserved salt bridge (Arg155-Glu244) between the two domains of OCP and showed that this salt bridge stabilises the inactive form of OCP. During photoactivation this salt bridge is broken and Arg155 is involved in the interaction between the OCP and the PB. The site of OCP binding in the core of a PB wasalso investigated with the in vitro reconstituted system. Our results demonstrated that the terminal energy emitters of the PB are not needed and that the first site of fluorescence quenching is an APC trimer emitting at 660 nm. Finally, we characterised the properties of excited states of the carotenoid in the photoactivated OCP showing that one of these states presents a very pronounced charge transfer character that likely has a principal role in energy dissipation. Our results strongly suggested that the OCP not only induces thermal energy dissipation but also acts as the energy dissipator.

Page generated in 0.0964 seconds