• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Knowledge driven approaches to e-learning recommendation

Mbipom, Blessing January 2018 (has links)
Learners often have difficulty finding and retrieving relevant learning materials to support their learning goals because of two main challenges. The vocabulary learners use to describe their goals is different from that used by domain experts in teaching materials. This challenge causes a semantic gap. Learners lack sufficient knowledge about the domain they are trying to learn about, so are unable to assemble effective keywords that identify what they wish to learn. This problem presents an intent gap. The work presented in this thesis focuses on addressing the semantic and intent gaps that learners face during an e-Learning recommendation task. The semantic gap is addressed by introducing a method that automatically creates background knowledge in the form of a set of rich learning-focused concepts related to the selected learning domain. The knowledge of teaching experts contained in e-Books is used as a guide to identify important domain concepts. The concepts represent important topics that learners should be interested in. An approach is developed which leverages the concept vocabulary for representing learning materials and this influences retrieval during the recommendation of new learning materials. The effectiveness of our approach is evaluated on a dataset of Machine Learning and Data Mining papers, and our approach outperforms benchmark methods. The results confirm that incorporating background knowledge into the representation of learning materials provides a shared vocabulary for experts and learners, and this enables the recommendation of relevant materials. We address the intent gap by developing an approach which leverages the background knowledge to identify important learning concepts that are employed for refining learners' queries. This approach enables us to automatically identify concepts that are similar to queries, and take advantage of distinctive concept terms for refining learners' queries. Using the refined query allows the search to focus on documents that contain topics which are relevant to the learner. An e-Learning recommender system is developed to evaluate the success of our approach using a collection of learner queries and a dataset of Machine Learning and Data Mining learning materials. Users with different levels of expertise are employed for the evaluation. Results from experts, competent users and beginners all showed that using our method produced documents that were consistently more relevant to learners than when the standard method was used. The results show the benefits in using our knowledge driven approaches to help learners find relevant learning materials.
2

Refinamento de Consultas em LÃgicas de DescriÃÃo Utilizando Teoria dos Rough Sets / Query Refinement in Description Logics Using the Rough Set Theory

Henrique Viana Oliveira 14 August 2012 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Refinamento de consulta consiste de tÃcnicas que modificam os termos de uma consulta com o objetivo de alterar os resultados obtidos inicialmente. Para a realizaÃÃo de tal fim, diversas abordagens podem ser aplicadas e diferentes tipos de refinamentos podem ser considerados. Este trabalho propÃe aplicar a teoria dos Rough Sets como uma nova alternativa de soluÃÃo para o problema. AtravÃs das noÃÃes presentes nessa teoria, iremos desenvolver tÃcnicas que serÃo aplicadas nas linguagens de LÃgicas de DescriÃÃo, que sÃo comumente utilizadas em problemas de representaÃÃo de bases de conhecimento ou ontologias. AlÃm disso, introduziremos duas extensÃes de LÃgicas de DescriÃÃo capazes de representar as operaÃÃes da teoria dos Rough Sets. Provaremos os resultados de complexidade de decisÃo dessas duas lÃgicas, assim como os resultados de complexidade das tÃcnicas de refinamentos desenvolvidas. Por fim, mostraremos mÃtricas de qualidade que poderÃo ser usadas para melhorar o resultado dos refinamentos obtidos. / Query Refinement consists of methods that modify the terms of a consult aiming the change of its result obtained previously. Refinements can be done of several ways and different approaches can be applied to it. This work proposes to apply methods of Query Refinement based on Rough Set theory, using it as an alternative for the refinement problem. The proposed methods will be grounded in the languages of Description Logics, which are commonly used on problems involving knowledge bases or ontologies representation. Two extensions of Description Logics with the Rough Set theory are introduced in this dissertation. We will prove the complexity of satisfiability of these logics, as well as the complexities of the query refinement methods applied to these logics. Finally, we will show quality measures which will aid to choose the results of the refinements obtained.
3

Supporting Multi-Criteria Decision Support Queries over Disparate Data Sources

Raghavan, Venkatesh 17 April 2012 (has links)
In the era of "big data revolution," marked by an exponential growth of information, extracting value from data enables analysts and businesses to address challenging problems such as drug discovery, fraud detection, and earthquake predictions. Multi-Criteria Decision Support (MCDS) queries are at the core of big-data analytics resulting in several classes of MCDS queries such as OLAP, Top-K, Pareto-optimal, and nearest neighbor queries. The intuitive nature of specifying multi-dimensional preferences has made Pareto-optimal queries, also known as skyline queries, popular. Existing skyline algorithms however do not address several crucial issues such as performing skyline evaluation over disparate sources, progressively generating skyline results, or robustly handling workload with multiple skyline over join queries. In this dissertation we thoroughly investigate topics in the area of skyline-aware query evaluation. In this dissertation, we first propose a novel execution framework called SKIN that treats skyline over joins as first class citizens during query processing. This is in contrast to existing techniques that treat skylines as an "add-on," loosely integrated with query processing by being placed on top of the query plan. SKIN is effective in exploiting the skyline characteristics of the tuples within individual data sources as well as across disparate sources. This enables SKIN to significantly reduce two primary costs, namely the cost of generating the join results and the cost of skyline comparisons to compute the final results. Second, we address the crucial business need to report results early; as soon as they are being generated so that users can formulate competitive decisions in near real-time. On top of SKIN, we built a progressive query evaluation framework ProgXe to transform the execution of queries involving skyline over joins to become non-blocking, i.e., to be progressively generating results early and often. By exploiting SKIN's principle of processing query at multiple levels of abstraction, ProgXe is able to: (1) extract the output dependencies in the output spaces by analyzing both the input and output space, and (2) exploit this knowledge of abstract-level relationships to guarantee correctness of early output. Third, real-world applications handle query workloads with diverse Quality of Service (QoS) requirements also referred to as contracts. Time sensitive queries, such as fraud detection, require results to progressively output with minimal delay, while ad-hoc and reporting queries can tolerate delay. In this dissertation, by building on the principles of ProgXe we propose the Contract-Aware Query Execution (CAQE) framework to support the open problem of contract driven multi-query processing. CAQE employs an adaptive execution strategy to continuously monitor the run-time satisfaction of queries and aggressively take corrective steps whenever the contracts are not being met. Lastly, to elucidate the portability of the core principle of this dissertation, the reasoning and query processing at different levels of data abstraction, we apply them to solve an orthogonal research question to auto-generate recommendation queries that facilitate users in exploring a complex database system. User queries are often too strict or too broad requiring a frustrating trial-and-error refinement process to meet the desired result cardinality while preserving original query semantics. Based on the principles of SKIN, we propose CAPRI to automatically generate refined queries that: (1) attain the desired cardinality and (2) minimize changes to the original query intentions. In our comprehensive experimental study of each part of this dissertation, we demonstrate the superiority of the proposed strategies over state-of-the-art techniques in both efficiency, as well as resource consumption.
4

Refinamento de Consultas em Lógicas de Descrição Utilizando Teoria dos Rough Sets / Query Refinement in Description Logics Using the Rough Set Theory

Oliveira, Henrique Viana January 2012 (has links)
OLIVEIRA, Henrique Viana. Refinamento de Consultas em Lógicas de Descrição Utilizando Teoria dos Rough Sets. 2012. 111 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências, Departamento de Computação, Fortaleza-CE, 2012. / Submitted by guaracy araujo (guaraa3355@gmail.com) on 2016-07-01T17:23:02Z No. of bitstreams: 1 2012_dis_hvoliveira.pdf: 789598 bytes, checksum: d75ef093adc56cc930f52c1e486ead5a (MD5) / Approved for entry into archive by guaracy araujo (guaraa3355@gmail.com) on 2016-07-01T17:23:47Z (GMT) No. of bitstreams: 1 2012_dis_hvoliveira.pdf: 789598 bytes, checksum: d75ef093adc56cc930f52c1e486ead5a (MD5) / Made available in DSpace on 2016-07-01T17:23:47Z (GMT). No. of bitstreams: 1 2012_dis_hvoliveira.pdf: 789598 bytes, checksum: d75ef093adc56cc930f52c1e486ead5a (MD5) Previous issue date: 2012 / Query Refinement consists of methods that modify the terms of a consult aiming the change of its result obtained previously. Refinements can be done of several ways and different approaches can be applied to it. This work proposes to apply methods of Query Refinement based on Rough Set theory, using it as an alternative for the refinement problem. The proposed methods will be grounded in the languages of Description Logics, which are commonly used on problems involving knowledge bases or ontologies representation. Two extensions of Description Logics with the Rough Set theory are introduced in this dissertation. We will prove the complexity of satisfiability of these logics, as well as the complexities of the query refinement methods applied to these logics. Finally, we will show quality measures which will aid to choose the results of the refinements obtained. / Refinamento de consulta consiste de técnicas que modificam os termos de uma consulta com o objetivo de alterar os resultados obtidos inicialmente. Para a realização de tal fim, diversas abordagens podem ser aplicadas e diferentes tipos de refinamentos podem ser considerados. Este trabalho propõe aplicar a teoria dos Rough Sets como uma nova alternativa de solução para o problema. Através das noções presentes nessa teoria, iremos desenvolver técnicas que serão aplicadas nas linguagens de Lógicas de Descrição, que são comumente utilizadas em problemas de representação de bases de conhecimento ou ontologias. Além disso, introduziremos duas extensões de Lógicas de Descrição capazes de representar as operações da teoria dos Rough Sets. Provaremos os resultados de complexidade de decisão dessas duas lógicas, assim como os resultados de complexidade das técnicas de refinamentos desenvolvidas. Por fim, mostraremos métricas de qualidade que poderão ser usadas para melhorar o resultado dos refinamentos obtidos.
5

Αυτόματη επιλογή σημασιολογικά συγγενών όρων για την επαναδιατύπωση των ερωτημάτων σε μηχανές αναζήτησης πληροφορίας / Automatic selection of semantic related terms for reformulating a query into a search engine

Κοζανίδης, Ελευθέριος 14 September 2007 (has links)
Η βελτίωση ερωτημάτων (Query refinement) είναι η διαδικασία πρότασης εναλλακτικών όρων στους χρήστες των μηχανών αναζήτησης του Διαδικτύου για την διατύπωση της πληροφοριακής τους ανάγκης. Παρόλο που εναλλακτικοί σχηματισμοί ερωτημάτων μπορούν να συνεισφέρουν στην βελτίωση των ανακτηθέντων αποτελεσμάτων, η χρησιμοποίησή τους από χρήστες του Διαδικτύου είναι ιδιαίτερα περιορισμένη καθώς οι όροι των βελτιωμένων ερωτημάτων δεν περιέχουν σχεδόν καθόλου πληροφορία αναφορικά με τον βαθμό ομοιότητάς τους με τους όρους του αρχικού ερωτήματος, ενώ συγχρόνως δεν καταδεικνύουν το βαθμό συσχέτισής τους με τα πληροφοριακά ενδιαφέροντα των χρηστών. Παραδοσιακά, οι εναλλακτικοί σχηματισμοί ερωτημάτων καθορίζονται κατ’ αποκλειστικότητα από τη σημασιολογική σχέση που επιδεικνύουν οι συμπληρωματικοί όροι με τους αρχικούς όρους του ερωτήματος, χωρίς να λαμβάνουν υπόψη τον επιδιωκόμενο στόχο της αναζήτησης που υπολανθάνει πίσω από ένα ερώτημα του χρήστη. Στην παρούσα εργασία θα παρουσιάσουμε μια πρότυπη τεχνική βελτίωσης ερωτημάτων η οποία χρησιμοποιεί μια λεξική οντολογία προκειμένου να εντοπίσει εναλλακτικούς σχηματισμούς ερωτημάτων οι οποίοι αφενός, θα περιγράφουν το αντικείμενο της αναζήτησης του χρήστη και αφετέρου θα σχετίζονται με τα ερωτήματα που υπέβαλε ο χρήστης. Το πιο πρωτοποριακό χαρακτηριστικό της τεχνικής μας είναι η οπτική αναπαράσταση του εναλλακτικού ερωτήματος με την μορφή ενός ιεραρχικά δομημένου γράφου. Η αναπαράσταση αυτή παρέχει σαφείς πληροφορίες για την σημασιολογική σχέση μεταξύ των όρων του βελτιωμένου ερωτήματος και των όρων που χρησιμοποίησε ο χρήστης για να εκφράσει την πληροφοριακή του ανάγκη ενώ παράλληλα παρέχει την δυνατότητα στον χρήστη να επιλέξει ποιοι από τους υποψήφιους όρους θα συμμετέχουν τελικά στην διαδικασία βελτιστοποίησης δημιουργώντας διαδραστικά το νέο ερώτημα. Τα αποτελέσματα των πειραμάτων που διενεργήσαμε για να αξιολογήσουμε την απόδοση της τεχνικής μας, είναι ιδιαίτερα ικανοποιητικά και μας οδηγούν στο συμπέρασμα ότι η μέθοδός μας μπορεί να βοηθήσει σημαντικά στη διευκόλυνση του χρήστη κατά τη διαδικασία επιλογής ερωτημάτων για την ανάκτηση πληροφορίας από τα δεδομένα του Παγκόσμιου Ιστού. / Query refinement is the process of providing Web information seekers with alternative wordings for expressing their information needs. Although alternative query formulations may contribute to the improvement of retrieval results, nevertheless their realization by Web users is intrinsically limited in that alternative query wordings do not convey explicit information about neither their degree nor their type of correlation to the user-issued queries. Moreover, alternative query formulations are determined based on the semantics of the issued query alone and they do not consider anything about the search intentions of the user issuing that query. In this paper, we introduce a novel query refinement technique which uses a lexical ontology for identifying alternative query formulations that are both informative of the user’s interests and related to the user selected queries. The most innovative feature of our technique is the visualization of the alternative query wordings in a graphical representation form, which conveys explicit information about the refined queries correlation to the user issued requests and which allows the user select which terms to participate in the refinement process. Experimental results demonstrate that our method has a significant potential in improving the user search experience.
6

Réponses manquantes : Débogage et Réparation de requêtes / Query Debugging and Fixing to Recover Missing Query Results

Tzompanaki, Aikaterini 14 December 2015 (has links)
La quantité croissante des données s’accompagne par l’augmentation du nombre de programmes de transformation de données, généralement des requêtes, et par la nécessité d’analyser et comprendre leurs résultats : (a) pourquoi telle réponse figure dans le résultat ? ou (b) pourquoi telle information n’y figure pas ? La première question demande de trouver l’origine ou la provenance des résultats dans la base, un problème très étudié depuis une 20taine d’années. Par contre, expliquer l’absence de réponses dans le résultat d’une requête est un problème peu exploré jusqu’à présent. Répondre à une question Pourquoi-Pas consiste à fournir des explications quant à l’absence de réponses. Ces explications identifient pourquoi et comment les données pertinentes aux réponses manquantes sont absentes ou éliminées par la requête. Notre travail suppose que la base de données n’est pas source d’erreur et donc cherche à fournir des explications fondées sur (les opérateurs de) la requête qui peut alors être raffinée ultérieurement en modifiant les opérateurs "fautifs". Cette thèse développe des outils formels et algorithmiques destinés au débogage et à la réparation de requêtes SQL afin de traiter des questions de type Pourquoi-Pas. Notre première contribution, inspirée par une étude critique de l’état de l’art, utilise un arbre de requête pour rechercher les opérateurs "fautifs". Elle permet de considérer une classe de requêtes incluant SPJA, l’union et l’agrégation. L’algorithme NedExplain développé dans ce cadre, a été validé formellement et expérimentalement. Il produit des explications de meilleure qualité tout en étant plus efficace que l’état de l’art.L’approche précédente s’avère toutefois sensible au choix de l’arbre de requête utilisé pour rechercher les explications. Notre deuxième contribution réside en la proposition d’une notion plus générale d’explication sous forme de polynôme qui capture toutes les combinaisons de conditions devant être modifiées pour que les réponses manquantes apparaissent dans le résultat. Cette méthode s’applique à la classe des requêtes conjonctives avec inégalités. Sur la base d’un premier algorithme naïf, Ted, ne passant pas à l’échelle, un deuxième algorithme, Ted++, a été soigneusement conçu pour éliminer entre autre les calculs itérés de sous-requêtes incluant des produits cartésien. Comme pour la première approche, une évaluation expérimentale a prouvé la qualité et l’efficacité de Ted++. Concernant la réparation des requêtes, notre contribution réside dans l’exploitation des explications polynômes pour guider les modifications de la requête initiale ce qui permet la génération de raffinements plus pertinents. La réparation des jointures "fautives" est traitée de manière originale par des jointures externes. L’ensemble des techniques de réparation est mis en oeuvre dans FixTed et permet ainsi une étude de performance et une étude comparative. Enfin, Ted++ et FixTed ont été assemblés dans une plate-forme pour le débogage et la réparation de requêtes relationnelles. / With the increasing amount of available data and data transformations, typically specified by queries, the need to understand them also increases. “Why are there medicine books in my sales report?” or “Why are there not any database books?” For the first question we need to find the origins or provenance of the result tuples in the source data. However, reasoning about missing query results, specified by Why-Not questions as the latter previously mentioned, has not till recently receivedthe attention it is worth of. Why-Not questions can be answered by providing explanations for the missing tuples. These explanations identify why and how data pertinent to the missing tuples were not properly combined by the query. Essentially, the causes lie either in the input data (e.g., erroneous or incomplete data) or at the query level (e.g., a query operator like join). Assuming that the source data contain all the necessary relevant information, we can identify the responsible query operators formingquery-based explanations. This information can then be used to propose query refinements modifying the responsible operators of the initial query such that the refined query result contains the expected data. This thesis proposes a framework targeted towards SQL query debugging and fixing to recover missing query results based on query-based explanations and query refinements.Our contribution to query debugging consist in two different approaches. The first one is a tree-based approach. First, we provide the formal framework around Why-Not questions, missing from the state-of-the-art. Then, we review in detail the state-of-the-art, showing how it probably leads to inaccurate explanations or fails to provide an explanation. We further propose the NedExplain algorithm that computes correct explanations for SPJA queries and unions there of, thus considering more operators (aggregation) than the state of the art. Finally, we experimentally show that NedExplain is better than the both in terms of time performance and explanation quality. However, we show that the previous approach leads to explanations that differ for equivalent query trees, thus providing incomplete information about what is wrong with the query. We address this issue by introducing a more general notion of explanations, using polynomials. The polynomial captures all the combinations in which the query conditions should be fixed in order for the missing tuples to appear in the result. This method is targeted towards conjunctive queries with inequalities. We further propose two algorithms, Ted that naively interprets the definitions for polynomial explanations and the optimized Ted++. We show that Ted does not scale well w.r.t. the size of the database. On the other hand, Ted++ is capable ii of efficiently computing the polynomial, relying on schema and data partitioning and advantageous replacement of expensive database evaluations by mathematical calculations. Finally, we experimentally evaluate the quality of the polynomial explanations and the efficiency of Ted++, including a comparative evaluation.For query fixing we propose is a new approach for refining a query by leveraging polynomial explanations. Based on the input data we propose how to change the query conditions pinpointed by the explanations by adjusting the constant values of the selection conditions. In case of joins, we introduce a novel type of query refinements using outer joins. We further devise the techniques to compute query refinements in the FixTed algorithm, and discuss how our method has the potential to be more efficient and effective than the related work.Finally, we have implemented both Ted++ and FixTed in an system prototype. The query debugging and fixing platform, short EFQ allows users to nteractively debug and fix their queries when having Why- Not questions.
7

利用隱含回饋提供搜尋引擎的自動查詢修正 / Automatic Query Refinement in Web Search Engines using Implicit Feedback

彭冠誌, Peng,Kuan-Chih Unknown Date (has links)
隨著全球資訊網蓬勃的發展,可以幫助使用者根據關鍵字搜尋相關資訊的搜尋引擎也已變成使用者不可或缺的工具之一。但對於搜尋引擎生手而言,往往不知道該如何地輸入適當的關鍵字,導致搜尋結果不如預期。如果搜尋引擎可以提供自動查詢修正(Automatic Query Refinement)的功能,將可以有效地幫助生手在網路上找尋到其想要的資訊。因此,如何得知使用者的資訊需求,如何自動化地達到查詢修正,則成為重要的課題之一。本研究利用使用者的隱含回饋(Implicit Feedback)來分析使用者的資訊需求,並探勘過去具有相同資訊需求的使用者經驗,以幫助搜尋引擎生手有效地搜尋網頁,以達到自動查詢修正的目的。 本研究中,在長期情境資訊方面,我們從查詢日誌中去辨別出以往使用者所查詢的關鍵字以及點選過的網頁,接著,在短期情境資訊的部份,我們也記錄下目前使用者的查詢關鍵字以及未點選之網頁。 最後,我們在長期情境中濾除掉搜尋引擎生手的查詢過程,同時探勘出與目前使用者有相似資訊需求的以往經驗使用者之查詢過程關鍵字集合,藉以推薦給目前使用者,完成自動查詢修正。 / World Wide Web search engines can help users to search information by their queries, but novice search engines users usually don’t know how to represent their information need. If search engines can offer query refinement automatically, it will help novice search engine users to satisfy their information need effectively. How to find users’ information need, and how to perform query refinement automatically, have become important research issues. In this thesis, we develop the method to help novice search engine users for satisfying their information need effectively by implicit feedback. Implicit feedback in this research is referring to short-term context and long-term context. In this research, first, long-term context is obtained by identifying each user’s queries and extracting conceptual keywords of clickthrough data in each query session from query logs. Then, we also identify current user’s queries and extract conceptual keywords of non-clickthrough data for short-term context identification. Finally, we filter novice sessions from long-term context, and mine frequent itemsets of past experienced users’ search behavior to suggest the most appropriate new query to current user according to their information need.

Page generated in 0.0932 seconds