• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New bounds for information complexity and quantum query complexity via convex optimization tools

Brandeho, Mathieu 28 September 2018 (has links) (PDF)
Cette thèse rassemble trois travaux sur la complexité d'information et sur la complexité en requête quantique. Ces domaines d'études ont pour points communs les outils mathématiques pour étudier ces complexités, c'est-à-dire les problèmes d'optimisation.Les deux premiers travaux concernent le domaine de la complexité en requête quantique, en généralisant l'important résultat suivant: dans l'article cite{LMRSS11}, leurs auteurs parviennent à caractériser la complexité en requête quantique, à l'aide de la méthode par adversaire, un programme semi-définie positif introduit par A. Ambainis dans cite{Ambainis2000}. Cependant, cette caractérisation est restreinte aux modèles à temps discret, avec une erreur bornée. Ainsi, le premier travail consiste à généraliser leur résultat aux modèles à temps continu, tandis que le second travail est une démarche, non aboutie, pour caractériser la complexité en requête quantique dans le cas exact et pour erreur non bornée.Dans ce premier travail, pour caractériser la complexité en requête quantique aux modèles à temps discret, nous adaptons la démonstration des modèles à temps discret, en construisant un algorithme en requête adiabatique universel. Le principe de cet algorithme repose sur le théorème adiabatique cite{Born1928}, ainsi qu'une solution optimale du dual de la méthode par adversaire. À noter que l'analyse du temps d'exécution de notre algorithme adiabatique est basée sur preuve qui ne nécessite pas d'écart dans le spectre de l'Hamiltonien.Dans le second travail, on souhaite caractériser la complexité en requête quantique pour une erreur non bornée ou nulle. Pour cela on reprend et améliore la méthode par adversaire, avec une approche de la mécanique lagrangienne, dans laquelle on construit un Lagrangien indiquant le nombre de requêtes nécessaires pour se déplacer dans l'espace des phases, ainsi on peut définir l'``action en requête''. Or ce lagrangien s'exprime sous la forme d'un programme semi-defini, son étude classique via les équations d'Euler-Lagrange nécessite l'utilisation du théorème de l'enveloppe, un puissant outils d'économathématiques. Le dernier travail, plus éloigné, concerne la complexité en information (et par extension la complexité en communication) pour simuler des corrélations non-locales. Ou plus précisement la quantitié d'information (selon Shannon) que doive s'échanger deux parties pour obtenir ses corrélations. Dans ce but, nous définissons une nouvelle complexité, denommée la zero information complexity IC_0, via le modèle sans communication. Cette complexité a l'avantage de s'exprimer sous la forme d'une optimization convexe. Pour les corrélations CHSH, on résout le problème d'optimisation pour le cas à une seule direction où nous retrouvons un résultat connu. Pour le scénario à deux directions, on met numériquement en évidence la validité de cette borne, et on résout une forme relaxée de IC_0 qui est un nouveau résultat. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
2

Designing Superior Evolutionary Algorithms via Insights From Black-Box Complexity Theory / Conception de meilleurs algorithmes évolutionnaires grâce à la théorie de la complexité boîte noire

Yang, Jing 04 September 2018 (has links)
Il a été observé que l'exécution des heuristiques de recherche aléatoire dépend d'un ou de plusieurs paramètres. Un certain nombre de résultats montrent un avantage des paramètres dynamiques, c'est-à-dire que les paramètres de l'algorithme sont modifiés au cours de son exécution. Dans ce travail, nous montrons que la complexité de la boîte noire sans biais de la classe de fonction de référence OneMax est $n ln(n) - cn pm o(n)$ pour une constante $c$ comprise entre $0.2539$ et $0.2665$. L'exécution peut être réalisé avec un algorithme simple de type-(1+1) utilisant une puissance de mutation fitness dépendant. Une fois traduite dans le cas du budget fixe, notre algorithme trouve des solutions plus proches de l'optimum de 13% que celles des meilleurs algorithmes connus.Basé sur la puissance de mutation optimale analysée pour OneMaX, nous montrons qu'un choix auto-ajusté du nombre de bits à retourner atteint le même temps d'exécution (excepté $o(n)$ termes inférieurs) et le même (asymptotique) 13% amélioration de la fitness-distance par rapport au RLS. Le mécanisme d'ajustement doit apprendre de manière adaptative la puissance de mutation actuellement optimale des itérations précédentes. Cela vise à la fois à exploiter le fait que des problèmes généralement différents peuvent nécessiter des puissances de mutation différentes et que, pour un problème fixe, différentes puissances peuvent devenir optimales à différentes étapes du processus d'optimisation.Nous étendons ensuite notre stratégie d'auto-ajustement aux algorithmes évolutifs basés sur la population dans des espaces discrets de recherche. Grosso modo, il consiste à créer la moitié de la descendance avec un taux de mutation qui est deux fois plus élevé que le taux de mutation actuel et l'autre moitié avec la moitié du taux actuel. Le taux de mutation est ensuite mis à jour au taux utilisé dans cette sous-population qui contient la meilleure descendance. Nous analysons comment l'algorithme d'évolution $(1+lambda)$ avec ce taux de mutation auto-ajustable optimise la fonction de test OneMax. Nous montrons que cette version dynamique de $(1+lambda)$~EA trouve l'optimum dans un temps d'optimisation attendu (nombre d'évaluations de la fitness) de $O(nlambda/loglambda+nlog n)$. Le temps est asymptotiquement plus petit que le temps d'optimisation de l'EA classique $(1+lambda)$. Des travaux antérieurs montrent que cette performance est la meilleure possible parmi tous les algorithmes de boîtes noires sans biais unaire basés sur des mutations $lambda$-parallèles.Nous proposons et analysons également une version auto-réglage de l'algorithme évolutionnaire $(1,lambda)$ dans lequel le taux de mutation actuel fait partie de l'individu et donc également sujet à mutation. Une analyse d'exécution rigoureuse sur la fonction de référence OneMax révèle qu'un simple schéma de mutation pour le taux conduit à un temps d'optimisation attendu du meilleur $O(nlambda/loglambda+nlog n)$. Notre résultat montre que l'auto-réglage dans le calcul évolutif peut trouver automatiquement des paramètres optimaux complexes. En même temps, cela prouve qu'un schéma d'auto-ajustement relativement compliqué pour le taux de mutation peut être remplacé par notre schéma endogène simple. / It has been observed that the runtime of randomized search heuristics depend on one or more parameters. A number of results show an advantage of dynamic parameter settings, that is, the parameters of the algorithm are changed during its execution. In this work, we prove that the unary unbiased black-box complexity of the OneMax benchmark function class is $n ln(n) - cn pm o(n)$ for a constant $c$ which is between $0.2539$ and $0.2665$. This runtime can be achieved with a simple (1+1)-type algorithm using a fitness-dependent mutation strength. When translated into the fixed-budget perspective, our algorithm finds solutions which are roughly 13% closer to the optimum than those of the best previously known algorithms.Based on the analyzed optimal mutation strength for OneMax, we show that a self-adjusting choice of the number of bits to be flipped attains the same runtime (apart from $o(n)$ lower-order terms) and the same (asymptotic) 13% fitness-distance improvement over RLS. The adjusting mechanism is to adaptively learn the currently optimal mutation strength from previous iterations. This aims both at exploiting that generally different problems may need different mutation strengths and that for a fixed problem different strengths may become optimal in different stages of the optimization process.We then extend our self-adjusting strategy to population-based evolutionary algorithms in discrete search spaces. Roughly speaking, it consists of creating half the offspring with a mutation rate that is twice the current mutation rate and the other half with half the current rate. The mutation rate is then updated to the rate used in that subpopulation which contains the best offspring. We analyze how the $(1+lambda)$ evolutionary algorithm with this self-adjusting mutation rate optimizes the OneMax test function. We prove that this dynamic version of the $(1+lambda)$~EA finds the optimum in an expected optimization time (number of fitness evaluations) of $O(nlambda/loglambda+nlog n)$. This time is asymptotically smaller than the optimization time of the classic $(1+lambda)$ EA. Previous work shows that this performance is best-possible among all $lambda$-parallel mutation-based unbiased black-box algorithms.We also propose and analyze a self-adaptive version of the $(1,lambda)$ evolutionary algorithm in which the current mutation rate is part of the individual and thus also subject to mutation. A rigorous runtime analysis on the OneMax benchmark function reveals that a simple local mutation scheme for the rate leads to an expected optimization time of the best possible $O(nlambda/loglambda+nlog n)$. Our result shows that self-adaptation in evolutionary computation can find complex optimal parameter settings on the fly. At the same time, it proves that a relatively complicated self-adjusting scheme for the mutation rate can be replaced by our simple endogenous scheme.
3

Two-player interaction in quantum computing : cryptographic primitives & query complexity

Magnin, Loick 05 December 2011 (has links) (PDF)
This dissertation studies two different aspects of two-player interaction in the model of quantum communication and quantum computation.First, we study two cryptographic primitives, that are used as basic blocks to construct sophisticated cryptographic protocols between two players, e.g. identification protocols. The first primitive is ''quantum bit commitment''. This primitive cannot be done in an unconditionally secure way. However, security can be obtained by restraining the power of the two players. We study this primitive when the two players can only create quantum Gaussian states and perform Gaussian operations. These operations are a subset of what is allowed by quantum physics, and plays a central role in quantum optics. Hence, it is an accurate model of communication through optical fibers. We show that unfortunately this restriction does not allow secure bit commitment. The proof of this result is based on the notion of ''intrinsic purification'' that we introduce to circumvent the use of Uhlman's theorem when the quantum states are Gaussian. We then examine a weaker primitive, ''quantum weak coin flipping'', in the standard model of quantum computation. Mochon has showed that there exists such a protocol with arbitrarily small bias. We give a clear and meaningful interpretation of his proof. That allows us to present a drastically shorter and simplified proof.The second part of the dissertation deals with different methods of proving lower bounds on the quantum query complexity. This is a very important model in quantum complexity in which numerous results have been proved. In this model, an algorithm has restricted access to the input: it can only query individual bits. We consider a generalization of the standard model, where an algorithm does not compute a classical function, but generates a quantum state. This generalization allows us to compare the strength of the different methods used to prove lower bounds in this model. We first prove that the ''multiplicative adversary method'' is stronger than the ''additive adversary method''. We then show a reduction from the ''polynomial method'' to the multiplicative adversary method. Hence, we prove that the multiplicative adversary method is the strongest one. Adversary methods are usually difficult to use since they involve the computation of norms of matrices with very large size. We show how studying the symmetries of a problem can largely simplify these computations. Last, using these principles we prove the tight lower bound of the INDEX-ERASURE problem. This a quantum state generation problem that has links with the famous GRAPH-ISOMORPHISM problem.
4

Amplification de l'amplitude : analyse et applications

Lamontagne, Philippe 01 1900 (has links)
Ce mémoire étudie l'algorithme d'amplification de l'amplitude et ses applications dans le domaine de test de propriété. On utilise l'amplification de l'amplitude pour proposer le plus efficace algorithme quantique à ce jour qui teste la linéarité de fonctions booléennes et on généralise notre nouvel algorithme pour tester si une fonction entre deux groupes abéliens finis est un homomorphisme. Le meilleur algorithme quantique connu qui teste la symétrie de fonctions booléennes est aussi amélioré et l'on utilise ce nouvel algorithme pour tester la quasi-symétrie de fonctions booléennes. Par la suite, on approfondit l'étude du nombre de requêtes à la boîte noire que fait l'algorithme d'amplification de l'amplitude pour amplitude initiale inconnue. Une description rigoureuse de la variable aléatoire représentant ce nombre est présentée, suivie du résultat précédemment connue de la borne supérieure sur l'espérance. Suivent de nouveaux résultats sur la variance de cette variable. Il est notamment montré que, dans le cas général, la variance est infinie, mais nous montrons aussi que, pour un choix approprié de paramètres, elle devient bornée supérieurement. / This thesis studies the quantum amplitude amplification algorithm and some of its applications in the field of property testing. We make use of the amplitude amplification algorithm to design an algorithm testing the linearity of Boolean functions which is more efficient than the previously best known quantum algorithm. We then generalize this new algorithm to test if a function between two finite abelian groups is a homomorphism. We improve on the previously best known algorithm for testing the symmetry of Boolean functions and use this new algorithm to test the quasi-symmetry of Boolean functions. Next, we further the study of the query complexity of the amplitude amplification algorithm for unknown initial amplitude. We give a rigorous description of the random variable representing the number of queries made by the algorithm and present the previously known result on its expected value upper bound. We then provide new results on the variance of this random variable. It is shown that, in the general case, the variance cannot be bounded above. We show, however, that it can be bounded for an appropriate choice of parameters.
5

Amplification de l'amplitude : analyse et applications

Lamontagne, Philippe 01 1900 (has links)
Ce mémoire étudie l'algorithme d'amplification de l'amplitude et ses applications dans le domaine de test de propriété. On utilise l'amplification de l'amplitude pour proposer le plus efficace algorithme quantique à ce jour qui teste la linéarité de fonctions booléennes et on généralise notre nouvel algorithme pour tester si une fonction entre deux groupes abéliens finis est un homomorphisme. Le meilleur algorithme quantique connu qui teste la symétrie de fonctions booléennes est aussi amélioré et l'on utilise ce nouvel algorithme pour tester la quasi-symétrie de fonctions booléennes. Par la suite, on approfondit l'étude du nombre de requêtes à la boîte noire que fait l'algorithme d'amplification de l'amplitude pour amplitude initiale inconnue. Une description rigoureuse de la variable aléatoire représentant ce nombre est présentée, suivie du résultat précédemment connue de la borne supérieure sur l'espérance. Suivent de nouveaux résultats sur la variance de cette variable. Il est notamment montré que, dans le cas général, la variance est infinie, mais nous montrons aussi que, pour un choix approprié de paramètres, elle devient bornée supérieurement. / This thesis studies the quantum amplitude amplification algorithm and some of its applications in the field of property testing. We make use of the amplitude amplification algorithm to design an algorithm testing the linearity of Boolean functions which is more efficient than the previously best known quantum algorithm. We then generalize this new algorithm to test if a function between two finite abelian groups is a homomorphism. We improve on the previously best known algorithm for testing the symmetry of Boolean functions and use this new algorithm to test the quasi-symmetry of Boolean functions. Next, we further the study of the query complexity of the amplitude amplification algorithm for unknown initial amplitude. We give a rigorous description of the random variable representing the number of queries made by the algorithm and present the previously known result on its expected value upper bound. We then provide new results on the variance of this random variable. It is shown that, in the general case, the variance cannot be bounded above. We show, however, that it can be bounded for an appropriate choice of parameters.
6

Two-player interaction in quantum computing : cryptographic primitives & query complexity / Interaction à deux joueurs en informatique quantique : primitives cryptographiques et complexité en requêtes

Magnin, Loïck 05 December 2011 (has links)
Cette thèse étudie deux aspects d'interaction entre deux joueurs dans le modèle du calcul et de la communication quantique.Premièrement, elle étudie deux primitives cryptographiques quantiques, des briques de base pour construire des protocoles cryptographiques complexes entre deux joueurs, comme par exemple un protocole d'identification. La première primitive est la ``mise en gage quantique". Cette primitive ne peut pas être réalisée de manière inconditionnellement sûre, mais il possible d'avoir une sécurité lorsque les deux parties sont soumis à certaines contraintes additionnelles. Nous étudions cette primitive dans le cas où les deux joueurs sont limités à l'utilisation d'états et d'opération gaussiennes, un sous-ensemble de la physique quantique central en optique, donc parfaitement adapté pour la communication via fibres optiques. Nous montrons que cette restriction ne permet malheureusement pas la réalisation de la mise en gage sûre. Pour parvenir à ce résultat, nous introduisons la notion de purification intrinsèque, qui permet de contourner l'utilisation du théorème de Uhlman, en particulier dans le cas gaussien. Nous examinons ensuite une primitive cryptographique plus faible, le ``tirage faible à pile ou face'', dans le modèle standard du calcul quantique. Carlos Mochon a donné une preuve d'existence d'un tel protocole avec un biais arbitrairement petit. Nous donnons une interprétation claire de sa preuve, ce qui nous permet de la simplifier et de la raccourcir grandement.La seconde partie de cette thèse concerne l'étude de méthodes pour prouver des bornes inférieures dans le modèle de la complexité en requête. Il s'agit d'un modèle de complexité central en calcul quantique dans lequel de nombreux résultats majeurs ont été obtenus. Dans ce modèle, un algorithme ne peut accéder à l'entrée uniquement en effectuant des requêtes sur chacun des bits de l'entrée. Nous considérons une extension de ce modèle dans lequel un algorithme ne calcule pas une fonction, mais doit générer un état quantique. Cette généralisation nous permet de comparer les différentes méthodes pour prouver des bornes inférieures dans ce modèle. Nous montrons d'abord que la méthode par adversaire ``multiplicative" est plus forte que la méthode ``additive". Nous montrons ensuite une réduction de la méthode polynomiale à la méthode multiplicative, ce qui permet de conclure à la supériorité de la méthode par adversaire multiplicative sur toutes les autres méthodes. Les méthodes par adversaires sont en revanche souvent difficiles à utiliser car elles nécessite le calcul de normes de matrices de très grandes tailles. Nous montrons comment l'étude des symétries d'un problème simplifie grandement ces calculs. Enfin, nous appliquons ces formules pour prouver la borne inférieure optimale du problème INDEX-ERASURE un problème de génération d'état quantique lié au célèbre problème GRAPH-ISOMORPHISM. / This dissertation studies two different aspects of two-player interaction in the model of quantum communication and quantum computation.First, we study two cryptographic primitives, that are used as basic blocks to construct sophisticated cryptographic protocols between two players, e.g. identification protocols. The first primitive is ``quantum bit commitment''. This primitive cannot be done in an unconditionally secure way. However, security can be obtained by restraining the power of the two players. We study this primitive when the two players can only create quantum Gaussian states and perform Gaussian operations. These operations are a subset of what is allowed by quantum physics, and plays a central role in quantum optics. Hence, it is an accurate model of communication through optical fibers. We show that unfortunately this restriction does not allow secure bit commitment. The proof of this result is based on the notion of ``intrinsic purification'' that we introduce to circumvent the use of Uhlman's theorem when the quantum states are Gaussian. We then examine a weaker primitive, ``quantum weak coin flipping'', in the standard model of quantum computation. Mochon has showed that there exists such a protocol with arbitrarily small bias. We give a clear and meaningful interpretation of his proof. That allows us to present a drastically shorter and simplified proof.The second part of the dissertation deals with different methods of proving lower bounds on the quantum query complexity. This is a very important model in quantum complexity in which numerous results have been proved. In this model, an algorithm has restricted access to the input: it can only query individual bits. We consider a generalization of the standard model, where an algorithm does not compute a classical function, but generates a quantum state. This generalization allows us to compare the strength of the different methods used to prove lower bounds in this model. We first prove that the ``multiplicative adversary method'' is stronger than the ``additive adversary method''. We then show a reduction from the ``polynomial method'' to the multiplicative adversary method. Hence, we prove that the multiplicative adversary method is the strongest one. Adversary methods are usually difficult to use since they involve the computation of norms of matrices with very large size. We show how studying the symmetries of a problem can largely simplify these computations. Last, using these principles we prove the tight lower bound of the INDEX-ERASURE problem. This a quantum state generation problem that has links with the famous GRAPH-ISOMORPHISM problem.

Page generated in 0.0518 seconds