• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Representation theory of Khovanov-Lauda-Rouquier algebras

Speyer, Liron January 2015 (has links)
This thesis concerns representation theory of the symmetric groups and related algebras. In recent years, the study of the “quiver Hecke algebras”, constructed independently by Khovanov and Lauda and by Rouquier, has become extremely popular. In this thesis, our motivation for studying these graded algebras largely stems from a result of Brundan and Kleshchev – they proved that (over a field) the KLR algebras have cyclotomic quotients which are isomorphic to the Ariki–Koike algebras, which generalise the Hecke algebras of type A, and thus the group algebras of the symmetric groups. This has allowed the study of the graded representation theory of these algebras. In particular, the Specht modules for the Ariki–Koike algebras can be graded; in this thesis we investigate graded Specht modules in the KLR setting. First, we conduct a lengthy investigation of the (graded) homomorphism spaces between Specht modules. We generalise the rowand column removal results of Lyle and Mathas, producing graded analogues which apply to KLR algebras of arbitrary level. These results are obtained by studying a class of homomorphisms we call dominated. Our study provides us with a new result regarding the indecomposability of Specht modules for the Ariki–Koike algebras. Next, we use homomorphisms to produce some decomposability results pertaining to the Hecke algebra of type A in quantum characteristic two. In the remainder of the thesis, we use homogeneous homomorphisms to study some graded decomposition numbers for the Hecke algebra of type A. We investigate graded decomposition numbers for Specht modules corresponding to two-part partitions. Our investigation also leads to the discovery of some exact sequences of homomorphisms between Specht modules.
2

Algèbres de Hecke carquois et généralisations d'algèbres d'Iwahori-Hecke / Quiver Hecke algebras and generalisations of Iwahori-Hecke algebras

Rostam, Salim 19 November 2018 (has links)
Cette thèse est consacrée à l'étude des algèbres de Hecke carquois et de certaines généralisations des algèbres d'Iwahori-Hecke. Dans un premier temps, nous montrons deux résultats concernant les algèbres de Hecke carquois, dans le cas où le carquois possède plusieurs composantes connexes puis lorsqu'il possède un automorphisme d'ordre fini. Ensuite, nous rappelons un isomorphisme de Brundan-Kleshchev et Rouquier entre algèbres d'Ariki-Koike et certaines algèbres de Hecke carquois cyclotomiques. D'une part nous en déduisons qu'une équivalence de Morita importante bien connue entre algèbres d'Ariki-Koike provient d'un isomorphisme, d'autre part nous donnons une présentation de type Hecke carquois cyclotomique pour l'algèbre de Hecke de G(r,p,n). Nous généralisons aussi l'isomorphisme de Brundan-Kleshchev pour montrer que les algèbres de Yokonuma-Hecke cyclotomiques sont des cas particuliers d'algèbres de Hecke carquois cyclotomiques. Finalement, nous nous intéressons à un problème de combinatoire algébrique, relié à la théorie des représentations des algèbres d'Ariki-Koike. En utilisant la représentation des partitions sous forme d'abaque et en résolvant, via un théorème d'existence de matrices binaires, un problème d'optimisation convexe sous contraintes à variables entières, nous montrons qu'un multi-ensemble de résidus qui est bégayant provient nécessairement d'une multi-partition bégayante. / This thesis is devoted to the study of quiver Hecke algebras and some generalisations of Iwahori-Hecke algebras. We begin with two results concerning quiver Hecke algebras, first when the quiver has several connected components and second when the quiver has an automorphism of finite order. We then recall an isomorphism of Brundan-Kleshchev and Rouquier between Ariki-Koike algebras and certain cyclotomic quiver Hecke algebras. From this, on the one hand we deduce that a well-known important Morita equivalence between Ariki--Koike algebras comes from an isomorphism, on the other hand we give a cyclotomic quiver Hecke-like presentation for the Hecke algebra of type G(r,p,n). We also generalise the isomorphism of Brundan-Kleshchev to prove that cyclotomic Yokonuma-Hecke algebras are particular cases of cyclotomic quiver Hecke algebras. Finally, we study a problem of algebraic combinatorics, related to the representation theory of Ariki-Koike algebras. Using the abacus representation of partitions and solving, via an existence theorem for binary matrices, a constrained optimisation problem with integer variables, we prove that a stuttering multiset of residues necessarily comes from a stuttering multipartition.

Page generated in 0.0504 seconds