• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isolation, Analysis, and Partial Characterization of an Inhibitor of Neisseria gonorrhoeae

Paul, Natania 01 May 2019 (has links)
There is an emerging threat of Neisseria gonorrhoeae strains that are resistant to all antibiotics. Because of this, the purpose of this research is to isolate, analyze, and partially characterize a new inhibitor(s) of N. gonorrhoeae. Since there is an unknown molecule secreted by Candida albicans that inhibits N. gonorrhoeae, this molecule can be partially characterized using 1H NMR Spectroscopy to assist in the development of a new antibiotic compound. It was hypothesized that quorum-sensing molecules, trans, trans- farnesol, tyrosol, phenylethyl alcohol, and tryptophol, could be possible candidates for the inhibitor. Because of this, 1H NMR spectra for these quorum-sensing molecules were obtained to serve as controls. Column chromatography and fractionation was used to isolate the inhibitor in large scale from C. albicans grown in salts-based media. Attempts to isolate the inhibitor in large scale, however, was unsuccessful since no inhibition of N. gonorrhoeae was observed. Because of this, analysis of growth media was conducted to test the media effect on producing the inhibitor. C. albicans was grown in liquid chocolate, liquid white chocolate, salts-based, and YPD media in aerobic and candle jar environments. Analysis of growth media in different environments suggests that liquid chocolate and salts-based media retain the inhibitory activity. 1H NMR spectra were obtained for the isolated molecule in liquid chocolate and salts-based media in both aerobic and candle jar environments. Analysis of this 1H NMR suggested that the inhibitor could be isolated from either the aerobic or candle jar environment for both liquid chocolate and salt-based media because a clear peak between 3.5 and 4.0 ppm was observed in all spectra. Comparison of 1H NMR spectra from quorum-sensing molecules with spectra from the isolated molecule suggests that the inhibitor is not a quorum-sensing molecule. The peaks represented by the inhibitor cannot be fully characterized and thus, either correspond to a single molecule or a complex molecular structure. It can be concluded that the inhibitor secreted by C. albicans to inhibit N. gonorrhoeae is a new unknown compound.
2

The Effects of Farnesol, a Quorum Sensing Molecule from Candida albicans, on Alcaligenes faecalis

Hutson, Savannah 01 May 2020 (has links)
Quorum sensing molecules have become a recent focus of study to learn if and how they can be used, both on their own and in conjecture with current antimicrobial methods, as a means of bacterial control. One such quorum sensing molecule is the sesquiterpene alcohol, Farnesol, which is synthesized and released by the fungus, Candida albicans. In most in-vivo cases, our laboratory has shown that Alcaligenes faecalis overtakes C. albicans, preventing its growth. However, as a way to counteract this inhibitory effect, Farnesol may be one way that Candida has found to fight back. In this study, we focused on the inhibitory properties of Farnesol for growth and motility of A. faecalis, as well as, the molecule’s ability to prevent Alcaligenes from creating biofilms and/or degrading them once they have already been established. Our experiments show evidence that Farnesol is able to inhibit both the growth and motility of A. faecalis, and determination of the specific concentrations of Farnesol needed to see the largest effects on A. faecalis biofilms. Our hope is that in future studies, we will be able to add varying concentrations of the Farnesol to known and widely used antibiotics in order to increase the effectiveness of antibiotics against bacterial strains, both in the Alcaligenes genus and in other genus, that have previously been considered “antibiotic resistant”.

Page generated in 0.0969 seconds