• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • Tagged with
  • 12
  • 12
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Roles of astroglial cannabinoid type 1 receptors (CB1) in memory and synaptic plasticity / Rôles du récepteur aux cannabinoïdes de type 1 des astrocytes dans la mémoire et la plasticité synaptique

Robin, Laurie 30 November 2018 (has links)
Le système endocannabinoïde est un important modulateur des fonctions physiologiques. Il est composé des récepteurs aux cannabinoïdes, de ses ligands lipides endogènes (les endocannabinoïdes) et de la machinerie enzymatique pour leur synthèse et leur dégradation. Les récepteurs aux cannabinoïdes de type 1 (CB1) sont exprimés dans différents types cellulaires dans le cerveau et sont connus pour être impliqués dans les processus mnésiques. Les endocannabinoïdes sont mobilisés dépendamment de l’activité notamment dans les régions cérébrales impliquées dans la mémoire telle que l’hippocampe. Dans cette région, les récepteurs CB1 sont exprimés au niveau des terminaisons neuronales présynaptiques où leur stimulation inhibe la libération de neurotransmetteurs, modulant ainsi différentes formes d’activité synaptique. Outre leur expression sur les neurones, les récepteurs CB1 sont également exprimés par les astrocytes. Avec l’élément pré- et post-synaptique, les astrocytes font partis de la « synapse tripartite » où ils participent à la plasticité synaptique et les processus mnésiques associés. De manière intéressante, la stimulation des récepteurs CB1 astrocytaires facilite la transmission glutamatergique dans l’hippocampe. Dans cette région, les astrocytes régulent l’activité des N-methyl-Daspartate receptors (NMDARs) à travers le contrôle des niveaux synaptiques de leur co-agoniste, la D-serine, modulant ainsi la plasticité synaptique à long terme. Cependant, le mécanisme entrainant la libération de D-serine par les astrocytes n’est pas identifié. De manière intéressante, notre laboratoire a montré que les effets délétères des cannabinoïdes exogènes sur la mémoire de travail spatial sont médiés par les récepteurs CB1 astrocytaires à travers un mécanisme dépendant des NMDARs dans l’hippocampe. Cependant, le rôle physiologique des récepteurs CB1 astrocytaires restent méconnus. Une des formes de mémoire impliquant le récepteurs CB1 est la mémoire de reconnaissance d’objet (NOR). La stimulation exogène des récepteurs CB1 hippocampique inhibe la consolidation de la NOR mais la délétion constitutive des récepteurs CB1 n’affecte pas la NOR, suggérant que la signalisation des récepteurs CB1 endogènes n’est pas nécessaire. Cependant, de récentes études soulignent que la délétion globale du gène CB1 pourrait masquer le rôle des récepteurs CB1 des différents types cellulaires. Ceci indique la nécessité de nouveaux outils plus sophistiqués afin de totalement comprendre le rôle physiologique du système endocannabinoïde dans des comportements complexes. Dans cette étude, nous avons étudié le rôle physiologique des récepteurs CB1 astrocytaires dans la formation de la NOR et la plasticité synaptique. En utilisant une combinaison d’approches génétiques, comportementales, électro-physiologiques, d’imagerie et de biochimie, nous avons montré que l’activation endogène des récepteurs CB1 astrocytaires est nécessaire pour la consolidation de la NOR à long terme, et ceci à travers un mécanisme impliquant l’apport en D-sérine, afin de stimuler l’activité des NMDARs synaptiques de l’hippocampe dorsal. Cette étude révèle un mécanisme inattendu à la base de la libération de D-sérine, entrainant l’activité des NMDARs et la formation de la mémoire à long terme. / The endocannabinoid system is an important modulator of physiological functions. It is composed of cannabinoid receptors, their endogenous lipid ligands (the endocannabinoids) and the enzymatic machinery for endocannabinoid synthesis and degradation. The type-1 cannabinoid receptors (CB1) are expressed in different cell types of the brain and are known to be involved in memory processes. Endocannabinoids are mobilized in an activity-dependent manner in brain areas involved in the modulation of memory such as the hippocampus. In this brain region, CB1 receptors are mainly expressed at neuronal pre-synaptic terminals where their stimulation inhibits the release of neurotransmitters, thereby modulating several forms of synaptic activity. Besides their expression in neurons, CB1 receptors are also expressed in astrocytes. Along with the pre- and post-synaptic neurons, astrocytes are part of the “tripartite synapse”, where they participate in synaptic plasticity and associated memory processes. Interestingly, modulation of astroglial CB1 receptors has been proposed to facilitate glutamatergic transmission in the hippocampus. In this brain area, astrocytes regulate the activity of N-methyl-D-aspartate receptors (NMDARs) through the control of the synaptic levels of their co-agonist D-serine, thereby mediating long-term synaptic plasticity. However, the mechanisms inducing D-serine release by astrocytes are still not identified. Interestingly, our laboratory showed that the negative effect of exogenous cannabinoids on spatial working memory is mediated by astroglial CB1 receptors through a NMDAR-dependent mechanism in the hippocampus, but the physiological role of astroglial CB1 remains unknown. One of the forms of memory involving CB1 receptors is novel object recognition (NOR) memory. The exogenous stimulation of hippocampal CB1 receptors inhibits the consolidation of long-term NOR formation. Constitutive global deletion of CB1 receptors in mice leaves NOR memory intact, suggesting that endogenous CB1 receptor signaling is not necessary for long-term NOR. However, recent studies pointed-out that, likely due to compensatory mechanisms, the global deletion of the CB1 gene might mask cell type-specific roles of CB1 receptors, indicating that more sophisticated tools are required to fully understand the physiological roles of the endocannabinoid system in complex behavioral functions. In this work, we investigated the physiological role of the astroglial CB1 receptors on NOR memory formation and synaptic plasticity. By using a combination of genetic, behavioral, electrophysiological, imaging and biochemical techniques, we showed that endogenous activation of astroglial CB1 receptors is necessary for the consolidation of long-term NOR memory, through a mechanism involving the supply of D-serine to enhance synaptic NMDARs-dependent plasticity in the dorsal hippocampus. This study uncovers an unforeseen mechanism underlying D-serine release, triggering NMDARs activity and long-term memory formation.ory.
12

Organisation et dynamique des protéines d'échafaudage de la postsynapse glutamatergique : implications dans la physio-pathologie de la transmission synaptique. / Organization and dynamics of glutamatergic postsynaptic scaffolding proteins : Involvement into synaptic transmission physio-pathology.

Moutin, Enora 06 December 2011 (has links)
La synapse glutamatergique est formée par une présynapse axonale et une postsynapse dont le support est l'épine dendritique. L'épine présente des récepteurs membranaires du glutamate liés à des protéines d'échafaudage sous-membranaires. Ces protéines de la densité postsynaptique (PSD) permettent de relier les récepteurs à leurs voies de signalisation. Les récepteurs NMDA sont reliés aux récepteurs métabotropiques du glutamate (mGluR1/5) via le complexe PSD95/GKAP/Shank/Homer. Au cours de ma thèse, j'ai caractérisé la dynamique d'interactions protéiques au sein de ce complexe et étudié les conséquences fonctionnelles sur l'activité des récepteurs.Homer est une protéine multimérique reliant mGluR5 au complexe PSD95/GKAP/Shank. La forme monomérique Homer1a est incapable de relier mGluR5 à Shank. Nous avons montré que la rupture du complexe par l'expression de Homer1a permet une interaction directe entre les récepteurs NMDA et mGluR5 et une inhibition des courants NMDA. Nous avons validé que ce processus intervient lors de la potentialisation synaptique. J'ai également étudié le rôle de l'interaction entre GKAP et DLC2, une chaîne légère de transporteurs moléculaires. Après avoir caractérisé l'occurrence et la dynamique de l'interaction GKAP-DLC2, j'ai montré que l'activité neuronale entraîne une augmentation de cette interaction et une accumulation synaptique de GKAP. De plus, cette interaction permet d'acheminer PSD95 dans les épines et d'augmenter les courants NMDA. L'ensemble de ces résultats montre que les protéines d'échafaudage participent à la signalisation des récepteurs, modulent la transmission synaptique et sous-tendent les mécanismes de plasticité à long terme. / The glutamatergic synapse is composed by an axonal presynapse and a postsynapse which is supported by a dendritic spine. The spine contains membrane glutamatergic receptors connected to sub-membrane scaffolding proteins. These postsynaptic density (PSD) proteins allow to link receptors to their signaling pathways. NMDA receptors are associated to metabotropic glutamate receptors (mGluR1/5) through the PSD95/GKAP/Shank/Homer protein complex. During my PhD, I have characterized protein-protein interactions dynamic in this complex and studied functional consequences on receptor activity.Homer is a multimeric protein linking mGluR5 to the PSD95/GKAP/Shank complex. The monomeric form Homer1a is unable to connect mGluR5 to Shank. We have shown that complex disruption by Homer1a expression induces a direct interaction between NMDA and mGluR5 and subsequent inhibition of NMDA currents. We have shown that this process occurs during synaptic potentiation.I have also studied the interaction between GKAP and DLC2, a light chain shared by molecular transporters. I have characterized the occurrence and dynamic of GKAP-DLC2 interaction and shown that neuronal activity increases this interaction leading to synaptic accumulation of GKAP. Moreover, this interaction allows PSD95 targeting into dendritic spines and NMDA currents increase. Together, these results show that scaffolding proteins participate to receptor signaling, modulate synaptic transmission and underlie long-term synaptic plasticity mechanisms.

Page generated in 0.0425 seconds