Spelling suggestions: "subject:"régression logistique"" "subject:"régression logistiques""
91 |
Interethnic conjugal unions among 1.5 and 2nd generations of Arab CanadiansHassin, Fatima 12 1900 (has links)
Dans cette étude, j’examine la propension à former une union interethnique parmi les Canadiens arabes de seconde génération et de génération 1.5 en utilisant les données du recensement canadien de 2016. L’analyse descriptive montre que les unions interethniques sont fréquentes au sein de cette population. Environ la moitié des hommes (56%) et des femmes (49%) sont dans une union interethnique avec une personne non-Arabe d’origine immigrante ou un(e) Canadien(ne) de troisième génération ou des générations suivantes. La régression logistique multinomiale révèle que les hommes et les femmes avec un niveau d’éducation plus élevé, une ascendance partiellement arabe et un statut d’immigrant de deuxième génération sont significativement plus enclins à être en union interethnique qu’à être en union intraethnique avec un immigrant de première génération. Conformément à la théorie de l’assimilation segmentée, ces résultats suggèrent que l’intégration socioéconomique et l’acculturation contribuent à la propension des descendants arabes à former des unions avec des individus non-arabes. La propension des descendants arabes à être en union intraethnique avec des immigrants de première génération ou des descendants est aussi une problématique dont je discute. / In this study, I examine the propensity to form interethnic unions among the 1.5 and second generations of Arab Canadians using the 2016 Canadian census data. The descriptive analysis shows that interethnic unions are common within this population. About half the men (56%) and the women (49%) are in an interethnic union with a non-Arab person with an immigrant background or a Canadian of third generation or subsequent generations. The multinomial logistic regression reveals that men and women with higher educational attainment, part Arab ancestry and second-generation immigrant status are significantly more prone to be in an interethnic union than in an intraethnic union with a first-generation immigrant. In accordance with the segmented assimilation theory, these results suggest that socioeconomic integration and acculturation contribute to the propensity of Arab descendants to form unions with non-Arab individuals. The propensity of Arab descendants to be in intraethnic unions with first generation-immigrants or with descendants of immigrants (1.5 and second generations) is also discussed in this thesis.
|
92 |
Apprentissage basé sur le Qini pour la prédiction de l’effet causal conditionnelBelbahri, Mouloud-Beallah 08 1900 (has links)
Les modèles uplift (levier en français) traitent de l'inférence de cause à effet pour un facteur spécifique, comme une intervention de marketing. En pratique, ces modèles sont construits sur des données individuelles issues d'expériences randomisées. Un groupe traitement comprend des individus qui font l'objet d'une action; un groupe témoin sert de comparaison. La modélisation uplift est utilisée pour ordonner les individus par rapport à la valeur d'un effet causal, par exemple, positif, neutre ou négatif.
Dans un premier temps, nous proposons une nouvelle façon d'effectuer la sélection de modèles pour la régression uplift. Notre méthodologie est basée sur la maximisation du coefficient Qini. Étant donné que la sélection du modèle correspond à la sélection des variables, la tâche est difficile si elle est effectuée de manière directe lorsque le nombre de variables à prendre en compte est grand. Pour rechercher de manière réaliste un bon modèle, nous avons conçu une méthode de recherche basée sur une exploration efficace de l'espace des coefficients de régression combinée à une pénalisation de type lasso de la log-vraisemblance. Il n'y a pas d'expression analytique explicite pour la surface Qini, donc la dévoiler n'est pas facile. Notre idée est de découvrir progressivement la surface Qini comparable à l'optimisation sans dérivée. Le but est de trouver un maximum local raisonnable du Qini en explorant la surface près des valeurs optimales des coefficients pénalisés. Nous partageons ouvertement nos codes à travers la librairie R tools4uplift. Bien qu'il existe des méthodes de calcul disponibles pour la modélisation uplift, la plupart d'entre elles excluent les modèles de régression statistique. Notre librairie entend combler cette lacune. Cette librairie comprend des outils pour: i) la discrétisation, ii) la visualisation, iii) la sélection de variables, iv) l'estimation des paramètres et v) la validation du modèle. Cette librairie permet aux praticiens d'utiliser nos méthodes avec aise et de se référer aux articles méthodologiques afin de lire les détails.
L'uplift est un cas particulier d'inférence causale. L'inférence causale essaie de répondre à des questions telle que « Quel serait le résultat si nous donnions à ce patient un traitement A au lieu du traitement B? ». La réponse à cette question est ensuite utilisée comme prédiction pour un nouveau patient. Dans la deuxième partie de la thèse, c’est sur la prédiction que nous avons davantage insisté. La plupart des approches existantes sont des adaptations de forêts aléatoires pour le cas de l'uplift. Plusieurs critères de segmentation ont été proposés dans la littérature, tous reposant sur la maximisation de l'hétérogénéité. Cependant, dans la pratique, ces approches sont sujettes au sur-ajustement. Nous apportons une nouvelle vision pour améliorer la prédiction de l'uplift. Nous proposons une nouvelle fonction de perte définie en tirant parti d'un lien avec l'interprétation bayésienne du risque relatif. Notre solution est développée pour une architecture de réseau de neurones jumeaux spécifique permettant d'optimiser conjointement les probabilités marginales de succès pour les individus traités et non-traités. Nous montrons que ce modèle est une généralisation du modèle d'interaction logistique de l'uplift. Nous modifions également l'algorithme de descente de gradient stochastique pour permettre des solutions parcimonieuses structurées. Cela aide dans une large mesure à ajuster nos modèles uplift. Nous partageons ouvertement nos codes Python pour les praticiens désireux d'utiliser nos algorithmes.
Nous avons eu la rare opportunité de collaborer avec l'industrie afin d'avoir accès à des données provenant de campagnes de marketing à grande échelle favorables à l'application de nos méthodes. Nous montrons empiriquement que nos méthodes sont compétitives avec l'état de l'art sur les données réelles ainsi qu'à travers plusieurs scénarios de simulations. / Uplift models deal with cause-and-effect inference for a specific factor, such as a marketing intervention. In practice, these models are built on individual data from randomized experiments. A targeted group contains individuals who are subject to an action; a control group serves for comparison. Uplift modeling is used to order the individuals with respect to the value of a causal effect, e.g., positive, neutral, or negative.
First, we propose a new way to perform model selection in uplift regression models. Our methodology is based on the maximization of the Qini coefficient. Because model selection corresponds to variable selection, the task is haunting and intractable if done in a straightforward manner when the number of variables to consider is large. To realistically search for a good model, we conceived a searching method based on an efficient exploration of the regression coefficients space combined with a lasso penalization of the log-likelihood. There is no explicit analytical expression for the Qini surface, so unveiling it is not easy. Our idea is to gradually uncover the Qini surface in a manner inspired by surface response designs. The goal is to find a reasonable local maximum of the Qini by exploring the surface near optimal values of the penalized coefficients. We openly share our codes through the R Package tools4uplift. Though there are some computational methods available for uplift modeling, most of them exclude statistical regression models. Our package intends to fill this gap. This package comprises tools for: i) quantization, ii) visualization, iii) variable selection, iv) parameters estimation and v) model validation. This library allows practitioners to use our methods with ease and to refer to methodological papers in order to read the details.
Uplift is a particular case of causal inference. Causal inference tries to answer questions such as ``What would be the result if we gave this patient treatment A instead of treatment B?" . The answer to this question is then used as a prediction for a new patient. In the second part of the thesis, it is on the prediction that we have placed more emphasis. Most existing approaches are adaptations of random forests for the uplift case. Several split criteria have been proposed in the literature, all relying on maximizing heterogeneity. However, in practice, these approaches are prone to overfitting. In this work, we bring a new vision to uplift modeling. We propose a new loss function defined by leveraging a connection with the Bayesian interpretation of the relative risk. Our solution is developed for a specific twin neural network architecture allowing to jointly optimize the marginal probabilities of success for treated and control individuals. We show that this model is a generalization of the uplift logistic interaction model. We modify the stochastic gradient descent algorithm to allow for structured sparse solutions. This helps fitting our uplift models to a great extent. We openly share our Python codes for practitioners wishing to use our algorithms.
We had the rare opportunity to collaborate with industry to get access to data from large-scale marketing campaigns favorable to the application of our methods. We show empirically that our methods are competitive with the state of the art on real data and through several simulation setting scenarios.
|
93 |
Family, work and welfare states in Europe: women's juggling with multiple roles :a series of empirical essays / Famille, emploi et état-providence: la jonglerie des femmes avec leurs multiples rôlesO'Dorchai, Sile Padraigin 24 January 2007 (has links)
The general focus of this thesis is on how the family, work and the welfare system are intertwined. A major determinant is the way responsibilities are shared by the state, the market and civil society in different welfare state regimes. An introductory chapter will therefore be dedicated to the development of the social dimension in the process of European integration. A first chapter will then go deeper into the comparative analysis of welfare state regimes, to comment on the provision of welfare in societies with a different mix of state, market and societal welfare roles and to assess the adequacy of existing typologies as reflections of today’s changed socio-economic, political and gender reality. Although they stand strong on their own, these first two chapters also contribute to contextualising the research subject of the remainder of the thesis: the study and comparison of the differential situation of women and men and of mothers and non-mothers on the labour markets of the EU-15 countries as well as of the role of public policies with respect to the employment penalties faced by women, particularly in the presence of young children. In our analysis, employment penalties are understood in three ways: (i) the difference in full-time equivalent employment rates between mothers and non-mothers, (ii) the wage penalty associated with motherhood, and (iii) the wage gap between part-time and full-time workers, considering men and women separately. Besides from a gender point of view, employment outcomes and public policies are thus assessed comparatively for mothers and non-mothers. Because women choose to take part in paid employment, fertility rates will depend on their possibilities to combine employment and motherhood. As a result, motherhood-induced employment penalties and the role of public policies to tackle them should be given priority attention, not just by scholars, but also by politicians and policy-makers. / Doctorat en Sciences économiques et de gestion / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0969 seconds