Spelling suggestions: "subject:"regularisierte"" "subject:"régularité.une""
1 |
Problémes bien-posés et étude qualitative pour des équations cinétiques et des équations dissipatives. / Well-posedness and qualitative study for some kinetic equations and some dissipative equationsCao, Hongmei 14 October 2019 (has links)
Dans cette thèse, nous étudions certaines équations différentielles partielles avec mécanisme dissipatif, telles que l'équation de Boltzmann, l'équation de Landau et certains systèmes hyperboliques symétriques avec type de dissipation. L'existence globale de solutions ou les taux de dégradation optimaux des solutions pour ces systèmes sont envisagées dans les espaces de Sobolev ou de Besov. Les propriétés de lissage des solutions sont également étudiées. Dans cette thèse, nous prouvons principalement les quatre suivants résultats, voir les chapitres 3-6 pour plus de détails. Pour le premier résultat, nous étudions le problème de Cauchy pour le non linéaire inhomogène équation de Landau avec des molécules Maxwelliennes (= 0). Voir des résultats connus pour l'équation de Boltzmann et l'équation de Landau, leur existence globale de solutions est principalement prouvée dans certains espaces de Sobolev (pondérés) et nécessite un indice de régularité élevé, voir Guo [62], une série d'oeuvres d'Alexander Morimoto-Ukai-Xu-Yang [5, 6, 7, 9] et des références à ce sujet. Récemment, Duan-Liu-Xu [52] et Morimoto-Sakamoto [145] ont obtenu les résultats de l'existence globale de solutions à l'équation de Boltzmann dans l'espace critique de Besov. Motivés par leurs oeuvres, nous établissons l'existence globale de la solution dans des espaces de Besov spatialement critiques dans le cadre de perturbation. Précisément, si le datum initial est une petite perturbation de la distribution d'équilibre dans l'espace Chemin-Lerner eL 2v (B3=2 2;1 ), alors le problème de Cauchy de Landau admet qu'une solution globale appartient à eL 1t eL 2v (B3=2 2;1 ). Notre résultat améliore le résultat dans [62] et étend le résultat d'existence globale de l'équation de Boltzmann dans [52, 145] à l'équation de Landau. Deuxièmement, nous considérons le problème de Cauchy pour l'équation de Kac non-coupée spatialement inhomogène. Lerner-Morimoto-Pravda-Starov-Xu a considéré l'équation de Kac non-coupée spatialement inhomogène dans les espaces de Sobolev et a montré que le problème de Cauchy pour la fluctuation autour de la distribution maxwellienne admise S 1+ 1 2s 1+ 1 2s Propriétés de régularité Gelfand-Shilov par rapport à la variable de vélocité et propriétés de régularisation G1+ 1 2s Gevrey à la variable de position. Et les auteurs ont supposé qu'il restait encore à déterminer si les indices de régularité 1 + 1 2s étaient nets ou non. Dans cette thèse, si la donnée initiale appartient à l'espace de Besov spatialement critique, nous pouvons prouver que l'équation de Kac inhomogène est bien posée dans un cadre de perturbation. De plus, il est montré que la solution bénéficie des propriétés de régularisation de Gelfand-Shilov en ce qui concerne la variable de vitesse et des propriétés de régularisation de Gevrey en ce qui concerne la variable de position. Dans notre thèse, l'indice de régularité de Gelfand-Shilov est amélioré pour être optimal. Et ce résultat est le premier qui présente un effet de lissage pour l'équation cinétique dans les espaces de Besov. A propos du troisième résultat, nous considérons les équations de Navier-Stokes-Maxwell compressibles apparaissant dans la physique des plasmas, qui est un exemple concret de systèmes composites hyperboliques-paraboliques à dissipation non symétrique. On observe que le problème de Cauchy pour les équations de Navier-Stokes-Maxwell admet le mécanisme dissipatif de type perte de régularité. Par conséquent, une régularité plus élevée est généralement nécessaire pour obtenir le taux de dégradation optimal de L1(R3)-L2(R3) type, en comparaison avec cela pour l'existence globale dans le temps de solutions lisses. / In this thesis, we study some kinetic equations and some partial differential equations with dissipative mechanism, such as Boltzmann equation, Landau equation and some non-symmetric hyperbolic systems with dissipation type. Global existence of solutions or optimal decay rates of solutions for these systems are considered in Sobolev spaces or Besov spaces. Also the smoothing properties of solutions are studied. In this thesis, we mainly prove the following four results, see Chapters 3-6 for more details. For the _rst result, we investigate the Cauchy problem for the inhomogeneous nonlinear Landau equation with Maxwellian molecules ( = 0). See from some known results for Boltzmann equation and Landau equation, their global existence of solutions are mainly proved in some (weighted) Sobolev spaces and require a high regularity index, see Guo [62], a series works of Alexandre-Morimoto-Ukai-Xu-Yang [5, 6, 7, 9] and references therein. Recently, Duan-Liu-Xu [52] and Morimoto-Sakamoto [145] obtained the global existence results of solutions to the Boltzmann equation in critical Besov spaces. Motivated by their works, we establish the global existence of solutions for Landau equation in spatially critical Besov spaces in perturbation framework. Precisely, if the initial datum is a small perturbation of the equilibrium distribution in the Chemin-Lerner space eL 2v (B3=2 2;1 ), then the Cauchy problem of Landau equation admits a global solution belongs to eL 1t eL 2v (B3=2 2;1 ). Our results improve the result in [62] and extend the global existence result for Boltzmann equation in [52, 145] to Landau equation. Secondly, we consider the Cauchy problem for the spatially nhomogeneous non-cuto_ Kac equation. Lerner-Morimoto-Pravda-Starov-Xu [117] considered the spatially inhomogeneous non-cuto_ Kac equation in Sobolev spaces and showed that the Cauchy problem for the uctuation around the Maxwellian distribution admitted S 1+ 1 2s 1+ 1 2s Gelfand-Shilov regularity properties with respect to the velocity variable and G1+ 1 2s Gevrey regularizing properties with respect to the position variable. And the authors conjectured that it remained still open to determine whether the regularity indices 1+ 1 2s is sharp or not. In this thesis, if the initial datum belongs to the spatially critical Besov space eL 2v (B1=2 2;1 ), we prove the well-posedness to the inhomogeneous Kac equation under a perturbation framework. Furthermore, it is shown that the weak solution enjoys S 3s+1 2s(s+1) 3s+1 2s(s+1) Gelfand-Shilov regularizing properties with respect to the velocity variableand G1+ 1 2s Gevrey regularizing properties with respect to the position variable. In our results, the Gelfand-Shilov regularity index is improved to be optimal. And this result is the _rst one that exhibits smoothing e_ect for the kinetic equation in Besov spaces. About the third result, we consider compressible Navier-Stokes-Maxwell equations arising in plasmas physics, which is a concrete example of hyperbolic-parabolic composite systems with non-symmetric dissipation. It is observed that the Cauchy problem for Navier-Stokes-Maxwell equations admits the dissipative mechanism of regularity-loss type. Consequently, extra higher regularity is usually needed to obtain the optimal decay rate of L1(R3)-L2(R3) type, in comparison with that for the global-in-time existence of smooth solutions.
|
Page generated in 0.057 seconds