• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Results in Gevrey and Analytic Hypoellipticity

David S. Tartakoff, Andreas.Cap@esi.ac.at 01 December 2000 (has links)
No description available.
2

On the Properties of Gevreyand Ultra-analytic Spaces

Figueirinhas, Diogo January 2016 (has links)
We look at the algebraic properties of Gevrey, analytic and ultraanalytic function spaces, namely their closure under composition, division and inversion. We show that both Gevrey and ultra-analytic spaces, G s with 1 ≤ s < ∞ and 0 < s < 1 respectively, form algebras. Closure under composition, division and inversion is shown to hold for the Gevrey case. For the ultra-analytic case we show it is not closed under composition. We also show that if a function is in G s , with 0 < s < 1 on a compact set, then it is in G s everywhere.
3

Cauchy problem for the incompressible Navier-Stokes equation with an external force and Gevrey smoothing effect for the Prandtl equation / Problème de Cauchy pour les équations de Navier-Stokes en présence d'une force extérieure et l'effet régularisant Gevrey de l'équation de Prandtl

Wu, Di 06 November 2017 (has links)
Dans cette thèse on étudie des équations de la mécanique des fluides. On considère deux modèles : les équations de Navier-Stokes équation dans R3 en présence d'une force extérieure, et l'équation de Prandtl dans le demi plan. Pour le système de Navier-Stokes, on s'intéresse à l'existence locale en temps, l'unicité, le comportement global en temps et des critères d'explosion. Pour l'équation de Prandtl dans le demi plan, on s'intéresse à la régularité Gevrey. Le manuscrit est constitué de quatre chapitres. Dans le premier chapitre, on introduit quelques concepts de base sur les équations de la mécanique des fluides et on rappelle le sens physique des deux modèles précédents ainsi que quelques résultats mathématiques. Ensuite on énonce brièvement nos principaux résultats et les motivations. Enfin on mentionne quelques problèmes ouverts. Le second chapitre est consacré au problème de Cauchy pour les équations de Navier-Stokes dans R3 en présence d'une petite force extérieure, peu régulière. On démontre l'existence locale en temps pour ce système pour toute donnée initiale appartenant à un espace de Besov critique avec régularité négative. On obtient de plus trois résultats d'unicité pour ces solutions. Enfin on étudie le comportement en temps grand et la stabilité de solutions a priori globales. Le troisième chapitre traite d'un critère d'explosion pour les équations de Navier-Stokes avec une force extérieure indépendante du temps. On met en place une décomposition en profils pour les équations de Navier-Stokes forcées. Cette décomposition permet de faire un lien entre les équations forcées et non forcées, ce qui permet de traduire une information d'explosion de la solution non forcée vers la solution forcée. Dans le Chapitre 4 on étudie l'effet régularisant Gevrey de la solution locale en temps de l'équation de Prandtl dans le demi plan. Il est bien connu que l'équation de couche limite de Prandtl est instable pour des données initiales générales, et bien posée dans des espaces de Sobolev pour des données initiales monotones. Sous une hypothèse de monotonie de la vitesse tangentielle du flot, on démontre la régularité Gevrey pour la solution de l'équation de Prandtl dans le demi plan pour des données initiales dans un espace de Sobolev. / This thesis deals with equations of fluid dynamics. We consider the following two models: one is the Navier-Stokes equation in R3 with an external force, the other one is the Prandtl equation on the half plane. For the Navier-Stokes system, we focus on the local in time existence, uniqueness, long-time behavior and blowup criterion. For the Prandtl equation on the half-plane, we consider the Gevrey regularity. This thesis consists in four chapters. In the first chapter, we introduce some background on equations of fluid dynamics and recall the physical meaning of the above two models as well as some well-known mathematical results. Next, we state our main results and motivations briefly. At last we mention some open problems. The second chapter is devoted to the Cauchy problem for the Navier-Stokes equation equipped with a small rough external force in R3. We show the local in time existence for this system for any initial data belonging to a critical Besov space with negative regularity. Moreover we obtain three kinds of uniqueness results for the above solutions. Finally, we study the long-time behavior and stability of priori global solutions.The third chapter deals with a blow-up criterion for the Navier-Stokes equation with a time independent external force. We develop a profile decomposition for the forced Navier-Stokes equation. The decomposition enables us to connect the forced and the unforced equations, which provides the blow-up information from the unforced solution to the forced solution. In Chapter 4, we study the Gevrey smoothing effect of the local in time solution to the Prandtl equation in the half plane. It is well-known that the Prandtl boundary layer equation is unstable for general initial data, and is well-posed in Sobolev spaces for monotonic initial data. Under a monotonicity assumption on the tangential velocity of the outflow, we prove Gevrey regularity for the solution to Prandtl equation in the half plane with initial data belonging to some Sobolev space.
4

Regularidade e resolubilidade de operadores diferenciais lineares em espaços de ultradistribuições / Regularity and solvability of linear differential operators in spaces of ultradistributions

Gabriel Cueva Candido Soares de Araujo 29 July 2016 (has links)
Desenvolvemos novos resultados da teoria dos espaços FS e DFS (espaços de Fréchet-Schwartz e seus duais) e os empregamos ao estudo da seguinte questão: quando certas propriedades de regularidade de um operador diferencial parcial linear (entre fibrados vetoriais Gevrey sobre uma variedade Gevrey) implicam resolubilidade, no sentido de ultradistribuições, do operador transposto? Estudamos esta questão para uma classe de operadores abstratos que contém os operadores diferenciais parciais lineares com coeficientes Gevrey usuais, mas também certas classes de operadores pseudo-diferenciais em variedades compactas, além de certos tipos de operadores de ordem infinita. Neste contexto, obtemos uma nova demonstração de um resultado global em variedades compactas (em que hipoelipticidade Gevrey global de um operador implica resolubilidade global de seu transposto), assim como alguns resultados no caso não-compacto relacionados à propriedade de não-confinamento de singularidades. Na sequência apresentamos algumas aplicações concretas, em particular para operadores de Hörmander, operadores de força constante e sistemas localmente integráveis de campos vetoriais. Analisamos ainda algumas instâncias de uma conjectura levantada em um artigo recente de F. Malaspina e F. Nicola (2014), a qual afirma que, para certos complexos diferenciais naturalmente associados a estruturas localmente integráveis, resolubilidade local no sentido de ultradistribuições (perto de um ponto, em um grau fixado) implica resolubilidade local no sentido de distribuições. Estabelecemos a validade desta conjectura quando o fibrado estrutural cotangente é gerado pelo diferencial de uma única integral primeira. / We develop new techniques in the setting of FS and DFS spaces (Fréchet-Schwartz spaces and their strong duals) and apply them to the study of the following question: when regularity properties of a general linear differential operator (between Gevrey vector bundles over a Gevrey manifold) imply solvability of its transpose in the sense of ultradistributions? This question is studied for a class of abstract operators that encompasses the usual partial differential operators with Gevrey coefficients, but also some flavors of pseudodifferential operators on compact manifolds and some classes of operators with infinite order. In this setting, we obtain a new proof of a global result on compact manifolds (global Gevrey hypoellipticity of the operator implying global solvability of the transpose), as well as some results in the non-compact case by means of the so-called property of non-confinement of singularities. We then move to some concrete applications, especially for Hörmander operators, operators of constant strength and locally integrable systems of vector fields. We also analyze some instances of a conjecture stated in a recent paper of F. Malaspina and F. Nicola (2014), which asserts that, in differential complexes naturally arising from locally integrable structures, local solvability in the sense of ultradistributions (near a point, in some fixed degree) implies local solvability in the sense of distributions. We establish the validity of the conjecture when the cotangent structure bundle is spanned by the differential of a single first integral.
5

Regularidade e resolubilidade de operadores diferenciais lineares em espaços de ultradistribuições / Regularity and solvability of linear differential operators in spaces of ultradistributions

Araujo, Gabriel Cueva Candido Soares de 29 July 2016 (has links)
Desenvolvemos novos resultados da teoria dos espaços FS e DFS (espaços de Fréchet-Schwartz e seus duais) e os empregamos ao estudo da seguinte questão: quando certas propriedades de regularidade de um operador diferencial parcial linear (entre fibrados vetoriais Gevrey sobre uma variedade Gevrey) implicam resolubilidade, no sentido de ultradistribuições, do operador transposto? Estudamos esta questão para uma classe de operadores abstratos que contém os operadores diferenciais parciais lineares com coeficientes Gevrey usuais, mas também certas classes de operadores pseudo-diferenciais em variedades compactas, além de certos tipos de operadores de ordem infinita. Neste contexto, obtemos uma nova demonstração de um resultado global em variedades compactas (em que hipoelipticidade Gevrey global de um operador implica resolubilidade global de seu transposto), assim como alguns resultados no caso não-compacto relacionados à propriedade de não-confinamento de singularidades. Na sequência apresentamos algumas aplicações concretas, em particular para operadores de Hörmander, operadores de força constante e sistemas localmente integráveis de campos vetoriais. Analisamos ainda algumas instâncias de uma conjectura levantada em um artigo recente de F. Malaspina e F. Nicola (2014), a qual afirma que, para certos complexos diferenciais naturalmente associados a estruturas localmente integráveis, resolubilidade local no sentido de ultradistribuições (perto de um ponto, em um grau fixado) implica resolubilidade local no sentido de distribuições. Estabelecemos a validade desta conjectura quando o fibrado estrutural cotangente é gerado pelo diferencial de uma única integral primeira. / We develop new techniques in the setting of FS and DFS spaces (Fréchet-Schwartz spaces and their strong duals) and apply them to the study of the following question: when regularity properties of a general linear differential operator (between Gevrey vector bundles over a Gevrey manifold) imply solvability of its transpose in the sense of ultradistributions? This question is studied for a class of abstract operators that encompasses the usual partial differential operators with Gevrey coefficients, but also some flavors of pseudodifferential operators on compact manifolds and some classes of operators with infinite order. In this setting, we obtain a new proof of a global result on compact manifolds (global Gevrey hypoellipticity of the operator implying global solvability of the transpose), as well as some results in the non-compact case by means of the so-called property of non-confinement of singularities. We then move to some concrete applications, especially for Hörmander operators, operators of constant strength and locally integrable systems of vector fields. We also analyze some instances of a conjecture stated in a recent paper of F. Malaspina and F. Nicola (2014), which asserts that, in differential complexes naturally arising from locally integrable structures, local solvability in the sense of ultradistributions (near a point, in some fixed degree) implies local solvability in the sense of distributions. We establish the validity of the conjecture when the cotangent structure bundle is spanned by the differential of a single first integral.
6

Problémes bien-posés et étude qualitative pour des équations cinétiques et des équations dissipatives. / Well-posedness and qualitative study for some kinetic equations and some dissipative equations

Cao, Hongmei 14 October 2019 (has links)
Dans cette thèse, nous étudions certaines équations différentielles partielles avec mécanisme dissipatif, telles que l'équation de Boltzmann, l'équation de Landau et certains systèmes hyperboliques symétriques avec type de dissipation. L'existence globale de solutions ou les taux de dégradation optimaux des solutions pour ces systèmes sont envisagées dans les espaces de Sobolev ou de Besov. Les propriétés de lissage des solutions sont également étudiées. Dans cette thèse, nous prouvons principalement les quatre suivants résultats, voir les chapitres 3-6 pour plus de détails. Pour le premier résultat, nous étudions le problème de Cauchy pour le non linéaire inhomogène équation de Landau avec des molécules Maxwelliennes (= 0). Voir des résultats connus pour l'équation de Boltzmann et l'équation de Landau, leur existence globale de solutions est principalement prouvée dans certains espaces de Sobolev (pondérés) et nécessite un indice de régularité élevé, voir Guo [62], une série d'oeuvres d'Alexander Morimoto-Ukai-Xu-Yang [5, 6, 7, 9] et des références à ce sujet. Récemment, Duan-Liu-Xu [52] et Morimoto-Sakamoto [145] ont obtenu les résultats de l'existence globale de solutions à l'équation de Boltzmann dans l'espace critique de Besov. Motivés par leurs oeuvres, nous établissons l'existence globale de la solution dans des espaces de Besov spatialement critiques dans le cadre de perturbation. Précisément, si le datum initial est une petite perturbation de la distribution d'équilibre dans l'espace Chemin-Lerner eL 2v (B3=2 2;1 ), alors le problème de Cauchy de Landau admet qu'une solution globale appartient à eL 1t eL 2v (B3=2 2;1 ). Notre résultat améliore le résultat dans [62] et étend le résultat d'existence globale de l'équation de Boltzmann dans [52, 145] à l'équation de Landau. Deuxièmement, nous considérons le problème de Cauchy pour l'équation de Kac non-coupée spatialement inhomogène. Lerner-Morimoto-Pravda-Starov-Xu a considéré l'équation de Kac non-coupée spatialement inhomogène dans les espaces de Sobolev et a montré que le problème de Cauchy pour la fluctuation autour de la distribution maxwellienne admise S 1+ 1 2s 1+ 1 2s Propriétés de régularité Gelfand-Shilov par rapport à la variable de vélocité et propriétés de régularisation G1+ 1 2s Gevrey à la variable de position. Et les auteurs ont supposé qu'il restait encore à déterminer si les indices de régularité 1 + 1 2s étaient nets ou non. Dans cette thèse, si la donnée initiale appartient à l'espace de Besov spatialement critique, nous pouvons prouver que l'équation de Kac inhomogène est bien posée dans un cadre de perturbation. De plus, il est montré que la solution bénéficie des propriétés de régularisation de Gelfand-Shilov en ce qui concerne la variable de vitesse et des propriétés de régularisation de Gevrey en ce qui concerne la variable de position. Dans notre thèse, l'indice de régularité de Gelfand-Shilov est amélioré pour être optimal. Et ce résultat est le premier qui présente un effet de lissage pour l'équation cinétique dans les espaces de Besov. A propos du troisième résultat, nous considérons les équations de Navier-Stokes-Maxwell compressibles apparaissant dans la physique des plasmas, qui est un exemple concret de systèmes composites hyperboliques-paraboliques à dissipation non symétrique. On observe que le problème de Cauchy pour les équations de Navier-Stokes-Maxwell admet le mécanisme dissipatif de type perte de régularité. Par conséquent, une régularité plus élevée est généralement nécessaire pour obtenir le taux de dégradation optimal de L1(R3)-L2(R3) type, en comparaison avec cela pour l'existence globale dans le temps de solutions lisses. / In this thesis, we study some kinetic equations and some partial differential equations with dissipative mechanism, such as Boltzmann equation, Landau equation and some non-symmetric hyperbolic systems with dissipation type. Global existence of solutions or optimal decay rates of solutions for these systems are considered in Sobolev spaces or Besov spaces. Also the smoothing properties of solutions are studied. In this thesis, we mainly prove the following four results, see Chapters 3-6 for more details. For the _rst result, we investigate the Cauchy problem for the inhomogeneous nonlinear Landau equation with Maxwellian molecules ( = 0). See from some known results for Boltzmann equation and Landau equation, their global existence of solutions are mainly proved in some (weighted) Sobolev spaces and require a high regularity index, see Guo [62], a series works of Alexandre-Morimoto-Ukai-Xu-Yang [5, 6, 7, 9] and references therein. Recently, Duan-Liu-Xu [52] and Morimoto-Sakamoto [145] obtained the global existence results of solutions to the Boltzmann equation in critical Besov spaces. Motivated by their works, we establish the global existence of solutions for Landau equation in spatially critical Besov spaces in perturbation framework. Precisely, if the initial datum is a small perturbation of the equilibrium distribution in the Chemin-Lerner space eL 2v (B3=2 2;1 ), then the Cauchy problem of Landau equation admits a global solution belongs to eL 1t eL 2v (B3=2 2;1 ). Our results improve the result in [62] and extend the global existence result for Boltzmann equation in [52, 145] to Landau equation. Secondly, we consider the Cauchy problem for the spatially nhomogeneous non-cuto_ Kac equation. Lerner-Morimoto-Pravda-Starov-Xu [117] considered the spatially inhomogeneous non-cuto_ Kac equation in Sobolev spaces and showed that the Cauchy problem for the uctuation around the Maxwellian distribution admitted S 1+ 1 2s 1+ 1 2s Gelfand-Shilov regularity properties with respect to the velocity variable and G1+ 1 2s Gevrey regularizing properties with respect to the position variable. And the authors conjectured that it remained still open to determine whether the regularity indices 1+ 1 2s is sharp or not. In this thesis, if the initial datum belongs to the spatially critical Besov space eL 2v (B1=2 2;1 ), we prove the well-posedness to the inhomogeneous Kac equation under a perturbation framework. Furthermore, it is shown that the weak solution enjoys S 3s+1 2s(s+1) 3s+1 2s(s+1) Gelfand-Shilov regularizing properties with respect to the velocity variableand G1+ 1 2s Gevrey regularizing properties with respect to the position variable. In our results, the Gelfand-Shilov regularity index is improved to be optimal. And this result is the _rst one that exhibits smoothing e_ect for the kinetic equation in Besov spaces. About the third result, we consider compressible Navier-Stokes-Maxwell equations arising in plasmas physics, which is a concrete example of hyperbolic-parabolic composite systems with non-symmetric dissipation. It is observed that the Cauchy problem for Navier-Stokes-Maxwell equations admits the dissipative mechanism of regularity-loss type. Consequently, extra higher regularity is usually needed to obtain the optimal decay rate of L1(R3)-L2(R3) type, in comparison with that for the global-in-time existence of smooth solutions.

Page generated in 0.0834 seconds