• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 2
  • Tagged with
  • 9
  • 9
  • 9
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quelques résultats mathématiques en thermodynamique des fluides compressibles

Jesslé, Didier 27 June 2013 (has links) (PDF)
Dans cette thèse, nous étudions les écoulements de fluides compressibles décrits par les équations de Navier-Stokes-Fourier dans les cas stationnaire et instationnaire et avec des conditions de bord assurant l'isolation thermique et mécanique du fluide. On commence par le cas stationnaire barotrope et des conditions de Navier à la frontière du domaine. La pression est donc de la forme p(%) = % où est appelé coefficient adiabatique et nous arrivons à montrer l'existence de solutions faibles pour > 1.On généralise ensuite ce résultat aux équations de Navier-Stokes-Fourier avec conduction de la chaleur et glissement (partiel ou total) au bord, toujours dans le cas stationnaire. On montre cette fois-ci l'existence de solutions faibles particulières appelées solutions entropiques variationnelles respectant l'inégalité d'entropie pour > 1 et l'existence de solutions faibles respectant le bilan de l'énergie totale au sens faible pour > 5/4. On travaille ensuite sur les écoulements instationnaires décrits par les équations de Navier-Stokes-Fourier sur une large variété de domaines non bornés, tout d'abord pour des conditions de bord d'adhérence puis pour des conditions de Navier à la frontière (ce qui restreintquelque peu la diversité des domaines non bornés admissibles). On arrive à montrer l'existence de solutions faibles particulières respectant l'inégalité d'entropie et une inégalité de dissipation remplaçant l'égalité de conservation d'énergie totale dans le volume qui n'a plus de sens dans les domaines non bornés. Par après, on met en place une inégalité dite d'entropie relative dont on montre qu'elle est respectée par certaines des solutions faibles exhibées auparavant. Ces solutions sont appelées solutions dissipatives. On parvient à prouver que pour chaque donnée initiale, il existe au moins une solution dissipative. Cette inégalité d'entropie relative nous permet de démontrer le principe d'unicité forte-faiblepour nos solutions dissipatives. Précisément, cela signifie qu'une solution dissipative et une solution forte issues des mêmes données initiales coïncident sur le temps maximal d'existence de la solution forte. La propriété d'unicité forte-faible donne un fondement à la notion de solution dissipative pour les domaines non bornés.
2

Quelques résultats mathématiques en thermodynamique des fluides compressibles / Some mathematical results in thermodynamic of compressible fluids

Jesslé, Didier 27 June 2013 (has links)
Dans cette thèse, nous étudions les écoulements de fluides compressibles décrits par les équations de Navier-Stokes-Fourier dans les cas stationnaire et instationnaire et avec des conditions de bord assurant l’isolation thermique et mécanique du fluide. On commence par le cas stationnaire barotrope et des conditions de Navier à la frontière du domaine. La pression est donc de la forme p(%) = % où est appelé coefficient adiabatique et nous arrivons à montrer l’existence de solutions faibles pour > 1.On généralise ensuite ce résultat aux équations de Navier-Stokes-Fourier avec conduction de la chaleur et glissement (partiel ou total) au bord, toujours dans le cas stationnaire. On montre cette fois-ci l’existence de solutions faibles particulières appelées solutions entropiques variationnelles respectant l’inégalité d’entropie pour > 1 et l’existence de solutions faibles respectant le bilan de l’énergie totale au sens faible pour > 5/4. On travaille ensuite sur les écoulements instationnaires décrits par les équations de Navier-Stokes-Fourier sur une large variété de domaines non bornés, tout d’abord pour des conditions de bord d’adhérence puis pour des conditions de Navier à la frontière (ce qui restreintquelque peu la diversité des domaines non bornés admissibles). On arrive à montrer l’existence de solutions faibles particulières respectant l’inégalité d’entropie et une inégalité de dissipation remplaçant l’égalité de conservation d’énergie totale dans le volume qui n’a plus de sens dans les domaines non bornés. Par après, on met en place une inégalité dite d’entropie relative dont on montre qu’elle est respectée par certaines des solutions faibles exhibées auparavant. Ces solutions sont appelées solutions dissipatives. On parvient à prouver que pour chaque donnée initiale, il existe au moins une solution dissipative. Cette inégalité d’entropie relative nous permet de démontrer le principe d’unicité forte-faiblepour nos solutions dissipatives. Précisément, cela signifie qu’une solution dissipative et une solution forte issues des mêmes données initiales coïncident sur le temps maximal d’existence de la solution forte. La propriété d’unicité forte-faible donne un fondement à la notion de solution dissipative pour les domaines non bornés. / In this thesis, we study the Navier-Stokes-Fourier system describing the flow of compressible fluids both in the steady and unsteady case and we suppose that the fluid is thermally and mechanically isolated. We start with the case of a steady barotropic fluid and Navier boundary conditions. In this situation, the pressure law considered is of the form p(%) = %, where is called the adiabatic constant. We show the existence of weak solutions for > 1. We then extend this result to the complete Navier-Stokes-Fourier system with heat conductivity and slip or partially slip boundary conditions, once again in thesteady case. In this setup, we prove the existence of a specific type of weak solutions, called variationnal entropy solutions, which satisfy the entropy inequality for > 1 and the existence of weak solutions satisfying the conservation of total energy in its weak formulation for > 5/4. We then treat the unsteady flows described by the complete Navier-Stokes-Fourier system on a large class of unbouded domains, first with no-slip boundary conditions and then with the Navier boundary conditions which reduce the class of the admissible unbounded domains. We manage to prove the existence of a specific type of weak solutions verifying the entropy inequality and a dissipation inequality instead of the global conservation of total energy which is no more relevant in the unbounded domains. Afterwards, we establish a new inequality called relative entropy inequality and we show that it is satisfied by some of the weak solutions presented previously. These are called dissipative solutions. Next we show that for any given initial data there exists at least one dissipative solution. This observation allows us toperform the proof of the weak-strong uniqueness principle in the class of dissipative solutions. Precisely, it means that a dissipative solution and a classical one emanating from the same initial data coincide as long as the latter exists. The weak-strong uniqueness property justifies the concept of dissipative solutions in the situation of unbounded domains.
3

Analyse mathématique de l'équation de Kuznetsov : problème de Cauchy, questions d'approximations et problèmes aux bords fractals. / Mathematical analysis of the Kuznetsov equation : Cauchy problem, approximation questions and problems with fractals boundaries.

Dekkers, Adrien 22 March 2019 (has links)
Dans le contexte de l’acoustique on a systématisé la dérivation de modèles nonlinéaires(l’équation de Kuznetsov, l’équation KZK et la NPE). On a estimé le temps pourlequel des solutions régulières de ces modèles restent proches des solutions des systèmes deNavier-Stokes/Euler compressibles isentropiques (en précisant leur plus faible régularité) etétabli les résultats analogues entre les solutions des équations de KZK, NPE et Westerveltpar rapport à la solution de l’équation de Kuznetsov. Pour ce faire, on a étudié l’équationde Kuznetsov en commençant par le problème de Cauchy dans les cas visqueux (stabilité,unicité et existence globale des solutions régulières) et non-visqueux (caractère bien poséavec les estimations optimales du temps d’existence maximale des solutions régulières) etégalement dans un demi espace avec des conditions au limites périodiques en temps oudans un espace périodique dans une direction. On a aussi obtenu l’existence et l’unicité dessolutions faibles pour l’équation des ondes fortement amortie et l’équation deWestervelt surla plus large classe de domaines aux bords irréguliers, ainsi que la convergence asymptotiquedes solutions de l’équation de Westervelt avec conditions de Robin sur les bords préfractalsapproximant un bord fractal de type mixture de Koch. / In the framework of acoustic we systematize the derivation of nonlinear models(the Kuznetsov equation, the KZK equation and the NPE). We estimate the time for whichthe regular solutions of these models stay close of the solutions of the compressible isentropicNavier-Stokes/Euler systems (pointing out their weakest regularity) and establish similarresults between the solutions of the KZK, NPE and Westervelt equations with respectto the solutions of the Kuznetsov equation. To do so, we study the Kuznetsov equationbeginning by the Cauchy problem in the viscous case (stability, gobal well posedness ofregular solutions) and inviscid case (well posedness with optimal estimations of the maximalexistence time for regular solutions) and also in the half space with time periodic boundaryconditions or in a periodic in one direction space. We also obtain the existence and unicityof weak solutions for the strongly damped wave equation and the Westervelt equation in thelargest class of domains with irregular boundaries, along with the asymptotic convergenceof the solutions of the Westervelt equation with Robin boundary conditions on prefractalboundaries approximating a Koch mixture as fractal boundary.
4

Cauchy problem for the incompressible Navier-Stokes equation with an external force and Gevrey smoothing effect for the Prandtl equation / Problème de Cauchy pour les équations de Navier-Stokes en présence d'une force extérieure et l'effet régularisant Gevrey de l'équation de Prandtl

Wu, Di 06 November 2017 (has links)
Dans cette thèse on étudie des équations de la mécanique des fluides. On considère deux modèles : les équations de Navier-Stokes équation dans R3 en présence d'une force extérieure, et l'équation de Prandtl dans le demi plan. Pour le système de Navier-Stokes, on s'intéresse à l'existence locale en temps, l'unicité, le comportement global en temps et des critères d'explosion. Pour l'équation de Prandtl dans le demi plan, on s'intéresse à la régularité Gevrey. Le manuscrit est constitué de quatre chapitres. Dans le premier chapitre, on introduit quelques concepts de base sur les équations de la mécanique des fluides et on rappelle le sens physique des deux modèles précédents ainsi que quelques résultats mathématiques. Ensuite on énonce brièvement nos principaux résultats et les motivations. Enfin on mentionne quelques problèmes ouverts. Le second chapitre est consacré au problème de Cauchy pour les équations de Navier-Stokes dans R3 en présence d'une petite force extérieure, peu régulière. On démontre l'existence locale en temps pour ce système pour toute donnée initiale appartenant à un espace de Besov critique avec régularité négative. On obtient de plus trois résultats d'unicité pour ces solutions. Enfin on étudie le comportement en temps grand et la stabilité de solutions a priori globales. Le troisième chapitre traite d'un critère d'explosion pour les équations de Navier-Stokes avec une force extérieure indépendante du temps. On met en place une décomposition en profils pour les équations de Navier-Stokes forcées. Cette décomposition permet de faire un lien entre les équations forcées et non forcées, ce qui permet de traduire une information d'explosion de la solution non forcée vers la solution forcée. Dans le Chapitre 4 on étudie l'effet régularisant Gevrey de la solution locale en temps de l'équation de Prandtl dans le demi plan. Il est bien connu que l'équation de couche limite de Prandtl est instable pour des données initiales générales, et bien posée dans des espaces de Sobolev pour des données initiales monotones. Sous une hypothèse de monotonie de la vitesse tangentielle du flot, on démontre la régularité Gevrey pour la solution de l'équation de Prandtl dans le demi plan pour des données initiales dans un espace de Sobolev. / This thesis deals with equations of fluid dynamics. We consider the following two models: one is the Navier-Stokes equation in R3 with an external force, the other one is the Prandtl equation on the half plane. For the Navier-Stokes system, we focus on the local in time existence, uniqueness, long-time behavior and blowup criterion. For the Prandtl equation on the half-plane, we consider the Gevrey regularity. This thesis consists in four chapters. In the first chapter, we introduce some background on equations of fluid dynamics and recall the physical meaning of the above two models as well as some well-known mathematical results. Next, we state our main results and motivations briefly. At last we mention some open problems. The second chapter is devoted to the Cauchy problem for the Navier-Stokes equation equipped with a small rough external force in R3. We show the local in time existence for this system for any initial data belonging to a critical Besov space with negative regularity. Moreover we obtain three kinds of uniqueness results for the above solutions. Finally, we study the long-time behavior and stability of priori global solutions.The third chapter deals with a blow-up criterion for the Navier-Stokes equation with a time independent external force. We develop a profile decomposition for the forced Navier-Stokes equation. The decomposition enables us to connect the forced and the unforced equations, which provides the blow-up information from the unforced solution to the forced solution. In Chapter 4, we study the Gevrey smoothing effect of the local in time solution to the Prandtl equation in the half plane. It is well-known that the Prandtl boundary layer equation is unstable for general initial data, and is well-posed in Sobolev spaces for monotonic initial data. Under a monotonicity assumption on the tangential velocity of the outflow, we prove Gevrey regularity for the solution to Prandtl equation in the half plane with initial data belonging to some Sobolev space.
5

Quelques résultats mathématiques sur les gaz à faible nombre de Mach

Liao, Xian, Liao, Xian 24 April 2013 (has links) (PDF)
Cette thèse est consacrée à l'étude de la dynamique des gaz à faible nombre de Mach. Le modèle étudié provient des équations de Navier-Stokes complètes lorsque le nombre de Mach tend vers zéro. On cherche à montrer que le problème de Cauchy correspondant est bien posé. Les cas visqueux et non visqueux sont tous deux considérés. Les coefficients physiques peuvent dépendre de la densité (ou de la température) inconnue. En particulier, nous prenons en compte les effets de conductivité thermique et on autorise de grandes variations d'entropie. Rappelons qu'en absence de diffusion thermique, la limite à faible nombre de Mach implique la condition d'incompressibilité. Dans le cadre étudié ici, en introduisant un nouveau champ de vitesses à divergence nulle, le système devient un couplage non linéaire entre une équation quasi-parabolique pour la densité et un système de type Navier-Stokes (ou Euler) pour la vitesse et la pression. Pour le cas avec viscosité, on établit le résultat classique, à savoir qu'il existe une solution forte existant localement (resp. globalement) en temps pour des données initiales grandes (resp. petites). On considère ici le problème de Cauchy avec données initiales dans des espaces de Besov critiques. Lorsque les coefficients physiques du système vérifient une relation spéciale, le système se simplifie considérablement, et on peut alors établir qu'il existe des solutions faibles globales en temps à énergie finie. Par un argument d'unicité fort-faible, on en déduit que les solutions fortes à énergie finie existent pour tous les temps positifs en dimension deux. Pour le cas sans viscosité, on montre d'abord le caractère bien posé dans des espaces de Besov limites, qui s'injectent dans l'espace des fonctions lipschitziennes. Des critères de prolongement et des estimations du temps de vie sont établis. Si l'on suppose la donnée initiale à énergie finie dans l'espace de Besov limite à exposant de Lebesgue infini, on a également un résultat d'existence locale. En dimension deux, le temps de vie tend vers l'infini quand la densité tend vers une constante positive. Des estimations de produits et de commutateurs, ainsi que des estimations a priori pour les équations paraboliques et pour le système de Stokes (ou d'Euler) à coefficients variables, se trouvent dans l'annexe. Ces estimations reposent sur la théorie de Littlewood-Paley et le calcul paradifférentiel
6

Quelques résultats mathématiques sur les gaz à faible nombre de Mach / Some mathematical results on gases with small Mach number

Liao, Xian 24 April 2013 (has links)
Cette thèse est consacrée à l'étude de la dynamique des gaz à faible nombre de Mach. Le modèle étudié provient des équations de Navier-Stokes complètes lorsque le nombre de Mach tend vers zéro. On cherche à montrer que le problème de Cauchy correspondant est bien posé. Les cas visqueux et non visqueux sont tous deux considérés. Les coefficients physiques peuvent dépendre de la densité (ou de la température) inconnue. En particulier, nous prenons en compte les effets de conductivité thermique et on autorise de grandes variations d'entropie. Rappelons qu'en absence de diffusion thermique, la limite à faible nombre de Mach implique la condition d'incompressibilité. Dans le cadre étudié ici, en introduisant un nouveau champ de vitesses à divergence nulle, le système devient un couplage non linéaire entre une équation quasi-parabolique pour la densité et un système de type Navier-Stokes (ou Euler) pour la vitesse et la pression. Pour le cas avec viscosité, on établit le résultat classique, à savoir qu'il existe une solution forte existant localement (resp. globalement) en temps pour des données initiales grandes (resp. petites). On considère ici le problème de Cauchy avec données initiales dans des espaces de Besov critiques. Lorsque les coefficients physiques du système vérifient une relation spéciale, le système se simplifie considérablement, et on peut alors établir qu'il existe des solutions faibles globales en temps à énergie finie. Par un argument d'unicité fort-faible, on en déduit que les solutions fortes à énergie finie existent pour tous les temps positifs en dimension deux. Pour le cas sans viscosité, on montre d'abord le caractère bien posé dans des espaces de Besov limites, qui s'injectent dans l'espace des fonctions lipschitziennes. Des critères de prolongement et des estimations du temps de vie sont établis. Si l'on suppose la donnée initiale à énergie finie dans l'espace de Besov limite à exposant de Lebesgue infini, on a également un résultat d'existence locale. En dimension deux, le temps de vie tend vers l'infini quand la densité tend vers une constante positive. Des estimations de produits et de commutateurs, ainsi que des estimations a priori pour les équations paraboliques et pour le système de Stokes (ou d'Euler) à coefficients variables, se trouvent dans l'annexe. Ces estimations reposent sur la théorie de Littlewood-Paley et le calcul paradifférentiel / This thesis is devoted to the study of the dynamics of the gases with small Mach number. The model comes from the complete Navier-Stokes equations when the Mach number goes to zero, and we aim at showing that it is well-posed. The viscous and inviscid cases are both considered. The physical coefficients may depend on the unknown density (or on the unknown temperature).In particular, we consider the effects of the thermal conductivity and hence large variations of entropy are allowed. Recall that if there is no thermal diffusion, then the low Mach number limit just implies the incompressibility condition. In the framework considered here, by introducing a new solenoidal velocity field, the system becomes a nonlinear coupling between a quasi-parabolic equation for the density and an evolutionary Stokes (or Euler) system for the velocity and the pressure. For the case with viscosity, we establish classical results, namely the strong solutions exist locally (resp. globally) in time for big (resp. small) initial data. We consider the Cauchy problem in the critical Besov spaces with the lowest regularity. Under a special relationship between the two physical coefficients, the system recasts in a simpler form and one may prove that there exist weak solutions with finite energy. In dimension two, this implies that strong solutions with finite energy exist for all positive times. In the inviscid case, we first prove the well-posedness result in endpoint Besov spaces, which can be embedded into the set of Lipschitzian functions. Continuation criterions and estimates for the lifespan are both established.If we suppose the initial data to be in the borderline Besov spaces with infinite Lebesgue exponent and to be of finite energy, we also have a local existence result. In dimension two, the lifespan goes to infinity when the density tends to a positive constant. Estimates for products and commutators, together with a priori estimates for the parabolic equations and the Stokes (or Euler) system with variable coefficients, are postponed in the appendix. These estimates are based on the Littlewood-Paley theory and the paradifferential calculus
7

Sur la contrôlabilité de quelques systèmes de type paraboliques avec un nombre réduit de contrôles et d'une équation de KdV avec dispersion évanescente / On the controllability of some systems of the parabolic kind with a reduced number of controls and of a KdV equation in the vanishing dispersion limit

Carreno-Godoy, Nicolas-Antonio 02 October 2014 (has links)
Ce travail est consacré à l'étude de quelques problèmes de contrôlabilité concernant plusieurs modèles issues de la mécanique des fluides. Dans le Chapitre 2, on obtient la contrôlabilité locale à zéro du système de Navier-Stokes avec contrôles distribués ayant une composante nulle. La nouveauté la plus importante est l'absence de conditions géometriques sur le domaine de contrôle. Le Chapitre 3 étend ce résultat pour le système de Boussinesq, où le couplage avec l'équation de la chaleur permet d'avoir jusqu'à deux composantes nulles dans le contrôle agissant sur l'équation du fluide. Le Chapitre 4 traite l'existence de contrôles insensibilisants pour le système de Boussinesq. En particulier, on montre la contrôlabilité à zéro d'un système en cascade issu du problème d'insensibilisation où le contrôle dans l'équation du fluide possède deux composantes nulles. Pour ces problèmes, on suit une approche classique. On établit la contrôlabilité à zéro du système linéalisé autour de zéro par une inégalité de Carleman pour le système adjoint avec des termes source. Puis, on obtient le résultat pour le système non linéaire par un argument d'inversion locale.Dans le Chapitre 5, on étudie quelques aspects de la contrôlabilité à zéro d'une équation de KdV linéaire avec conditions au bord de type Colin-Ghidaglia. On obtient une estimation du coût de la contrôlabilité à zéro qui est optimal par rapport au coefficient de dispersion. Sa preuve repose sur une inégalité de Carleman avec un comportement optimal en temps. Puis, on montre que le coût de la contrôlabilité à zéro explose exponentiellement par rapport au coefficient de dispersion lorsque le temps final est suffisamment petit. / This work is devoted to the study of some controllability problems concerning some models from fluid mechanics. First, in Chapter 2, we obtain the local null controllability of the Navier-Stokes system with distributed controls having one vanishing component. The main novelty is that no geometric condition is imposed on the control domain. In Chapter 3, we extend this result for the Boussinesq system, where the coupling with the temperature equation allows us to have up to two vanishing components in the control acting on the fluid equation. Chapter 4 deals with the existence of insensitizing controls for the Boussinesq system. In particular, we prove the null controllability of the cascade system arising from the reformulation of the insensitizing problem, where the control on the fluid equation has two vanishing components. For these problems, we follow a classical approach. We establish the null controllability of the linearized system around the origin by means of a suitable Carleman inequality for the adjoint system with source terms. Then, we obtain the result for the nonlinear system by a local inversion argument.In Chapter 5, we study some null controllability aspects of a linear KdV equation with Colin-Ghidaglia boundary conditions. First, we obtain an estimation of the cost of null controllability, which is optimal with respect to the dispersion coefficient. This improves previous results on this matter. Its proof relies on a Carleman estimate with an optimal behavior in time. Finally, we prove that the cost of null controllability blows up exponentially with respect to the dispersion coefficient provided that the final time is small enough.
8

Quelques résultats mathématiques sur les gaz à faible nombre de Mach

Liao, Xian 24 April 2013 (has links) (PDF)
Cette thèse est consacrée à l'étude de la dynamique des gaz à faible nombre de Mach. Le modèle étudié provient des équations de Navier-Stokes complètes lorsque le nombre de Mach tend vers zéro. On cherche à montrer que le problème de Cauchy correspondant est bien posé. Les cas visqueux et non visqueux sont tous deux considérés. Les coefficients physiques peuvent dépendre de la densité (ou de la température) inconnue. En articulier, nous prenons en compte les effets de onductivité thermique et on autorise de grandes variations d'entropie. Rappelons qu'en absence de diffusion thermique, la limite à faible nombre de Mach implique la condition d'incompressibilité. Dans le cadre étudié ici, en introduisant un nouveau champ de vitesses à divergence nulle, le système devient un couplage non linéaire entre une équation quasi-parabolique pour la densité et un système de type Navier-Stokes (ou Euler) pour la vitesse et la pression. \\\\ Pour le cas avec viscosité, on établit le résultat classique, à savoir qu'il existe une solution forte existant localement (resp. globalement) en temps pour des données initiales grandes (resp. petites). On considère ici le problème de Cauchy avec données initiales dans des espaces de Besov critiques. Lorsque les coefficients physiques du système vérifient une relation spéciale, le système se simplifie considérablement, et on peut alors établir qu'il existe des solutions faibles globales en temps à énergie finie. Par un argument d'unicité fort-faible, on en déduit que les solutions fortes à énergie finie existent pour tous les temps positifs en dimension deux. \\\\ Pour le cas sans viscosité, on montre d'abord le caractère bien posé dans des espaces de Besov limites, qui s'injectent dans l'espace des fonctions lipschitziennes. Des critères de prolongement et des estimations du temps de vie sont établis. Si l'on suppose la donnée initiale à énergie finie dans l'espace de Besov limite à exposant de Lebesgue infini, on a également un résultat d'existence locale. En dimension deux, le temps de vie tend vers l'infini quand la densité tend vers une constante positive. \\\\ Des estimations de produits et de commutateurs, ainsi que des estimations a priori pour les équations paraboliques et pour le système de Stokes (ou d'Euler) à coefficients variables, se trouvent dans l'annexe.Ces estimations reposent sur la théorie de Littlewood-Paley et le calcul paradifférentiel.
9

Stabilité de solutions régulières pour des systèmes d'Euler-Maxwell et de Navier-Stokes-Maxwell compressibles / Stabilities of smooth solutions for compressible Euler-Maxwell and Navier-Stokes-Maxwell systems

Feng, Yuehong 05 September 2014 (has links)
Cette thèse est essentiellement composée de deux parties traitant des problèmes de Cauchy ou des problèmes périodiques. Dans la première partie, on étudie la stabilité de solutions régulières au voisinage d'états d'équilibre non constants pour un système d'Euler-Maxwell isentropique compressible bipolaire. Par des estimations d'énergie classiques et un argument de récurrence sur l'ordre des dérivées des solutions, on montre l'existence globale et l'unicité des solutions régulières du système lorsque les données initiales sont proches des états d'équilibre. On obtient aussi le comportement asymptotique des solutions quand le temps tend vers l'infini. Dans la deuxième partie, on considère la stabilité en temps long des solutions régulières de systèmes d'Euler-Maxwell et de Navier-Stokes-Maxwell compressibles dans le cas non isentropique lorsque les états d'équilibre sont constants. Grâce à des choix convenables de symétriseurs des systèmes et à des estimations d'énergie, on montre l'existence globale et l'unicité des solutions régulières des systèmes avec données initiales petites. De plus, par le principe de Duhamel et l'outil d'analyse de Fourier, on obtient des taux de décroissance des solutions quand le temps tend vers l'infini. / This thesis is essentially composed of two parts dealing with Cauchy problems and periodic problems. In the first part, we study the stability of smooth solutions near non constant equilibrium states for a two-fluid isentropic compressible Euler-Maxwell system.By classical energy estimates together with an induction argument on the order of the derivatives of solutions, we prove the existence and uniqueness of global solutions to the system when the given initial data are near the equilibrium states. We also obtain the asymptotic behavior of solutions when the time goes to infinity. In the second part, we consider the long time stability of the global smooth solutions for compressible Euler-Maxwell and Navier-Stokes-Maxwell systems in non isentropic case when the equilibrium solutions are constants. With the help of suitable choices of symmetrizers and energy estimates, we prove the existence and uniqueness of global solutions to the systems with given small initial data. Furthermore, using the Duhamel principle and the Fourier analysis tool, we obtain the decay rates of smooth solutions as the time goes to infinity.

Page generated in 0.0609 seconds