• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 10
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception et analyse de schémas non-linéaires pour la résolution de problèmes paraboliques : application aux écoulements en milieux poreux / Design and analysis of non-linear schemes for solving parabolic problems : application to flows in porous media

Ait Hammou Oulhaj, Ahmed 11 December 2017 (has links)
L'objectif de cette thèse est de concevoir et d'analyser des schémas numériques performants pour la simulation d'écoulements complexes en milieux poreux. Dans un premier temps nous proposons un schéma CVFE (Control Volume Finite Element) non-linéaire pour approcher la solution de l'équation de Richards anisotrope. La mobilité d'arête est gérée à l'aide d'une procédure de décentrement. On montre d'abord que ce schéma est non-linéairement stable, qu'il admet (au moins) une solution discrète et que la saturation est bornée entre 0 et 1. Ce schéma converge sans restriction sur le maillage. Enfin, en vue de mettre en évidence l'efficacité, la stabilité et la robustesse de la méthode, nous réalisons des tests numériques dans des cas isotropes et anisotropes. Dans un second temps on étudie un schéma Volumes finis (avec décentrement des mobilités) pour un modèle d'intrusion saline. Il préserve au niveau discret les principales propriétés du problème continu: l'existence de solutions discrètes positives, la décroissance de l'énergie et le contrôle de l'entropie et sa dissipation. Nous montrons que ce schéma converge. De plus, nous illustrons numériquement le comportement du modèle. Enfin nous étudions le comportement en temps long d'un modèle d'intrusion saline. Il s'agit d'identifier les états stationnaires qui sont les minimiseurs d'une énergie convexe. On montre pour le problème continu l'existence et l'unicité des minimiseurs de l'énergie, que les minimiseurs sont des états stationnaires et que ces états stationnaires sont radiaux et uniques. Nous donnons une illustration numérique des états stationnaires et nous exhibons le taux de convergence. / This thesis is focused on the design and the analysis of efficient numerical schemes for the simulation of complex flows in porous media. First, we propose a nonlinear Control Volume Finite Element scheme (CVFE) in order to approximate the solution of Richards equation with anisotropy. This scheme is based on a suitable upwinding of the mobility which allows the negative transmissibility coefficients. We prove the nonlinear stability of the scheme, that there exists (at least) one discrete solution and that the saturation belongs to the interval [0,1]. Moreover, the convergence of the method is proved as the discretization steps tend to 0. We give some numerical experiments on isotropic and anisotropic cases illustrate the efficiency of the method. Second, we propose and analyze a finite volume scheme based on two-point flux approximation with upwind mobilities for a seawater intrusion model. The scheme preserves at the discrete level the main features of the continuous problem, namely the nonnegativity of the solutions, the decay of the energy and the control of the entropy and its dissipation. We show the convergence of this scheme. Numerical results are provided to illustrate the behavior of the model. Finally, the large time behaviour of the seawater intrusion model is studied. The goal is to identify the steady states which are the minimizers of a convex energy. We prove for the continuous problem the existence and uniqueness of the minimizers of the energy, that the minimizers are stationary states and that these stationary states are radial and unique. We give numerical illustrations of the stationary states and we exhibit the convergence rate.
2

Étude du comportement en temps long d'équations aux dérivées partielles par des méthodes probabilistes / Study of the large time behaviour of partial differential equations using probabilistic methods

Lemonnier, Florian 28 May 2019 (has links)
Cette thèse s'intéresse à une étude des EDSR ergodiques, avec pour principal objectif leur application à l'étude du comportement en temps long de certaines EDP. Dans un premier temps, nous démontrons des résultats (qui sont déjà connus dans le cadre où l'EDS sous-jacente est à bruit additif) dans un cadre de bruit sous-jacent multiplicatif. Par la suite, l'introduction d'un nouvel aléa via un processus de Poisson nous permet de nous intéresser non plus au comportement en temps long d'une seule EDP, mais au comportement en temps long d'un système d'EDP couplées. Enfin, lorsque l'EDS sous-jacente est bruitée par un processus de Lévy, le lien est fait avec des équations intégro-différentielles partielles. L'application de ces équations à la résolution de problèmes de contrôle optimal est également présentée. / In this thesis, we are interested in studying ergodic BSDEs, and our main goal is to apply our results to the large time behaviour of some PDEs. First, we prove some results (already known in the case where the underlying SDE has an additive noise) in the case of an underlying multiplicative noise. Then, we introduce a Poisson process and it leads us to the large time behaviour of a system of coupled PDEs. Finally, when the underlying SDE has a Lévy noise, we make a link with partial integro-differential equations. We also apply these equations to solve some optimal control problems.
3

Équations de transport-fragmentation et applications aux maladies à prions

Gabriel, Pierre 20 June 2011 (has links) (PDF)
Les phénomènes de croissance et de fragmentation des polymères jouent un rôle central dans le développement des maladies à prions. Pour les étudier, nous adoptons le formalisme des populations structurées et analysons l'équation intégro-différentielle de transport-fragmentation. Dans un premier temps, nous nous intéressons au problème aux valeurs propres pour l'opérateur de transport-fragmentation linéaire. Nous montrons l'existence et l'unicité de la valeur propre principale et des vecteurs propres associés sous des conditions générales incluant les cas dégénérés dans lesquels le coefficient de transport s'annule à l'origine. Nous analysons ensuite la dépendance de ces éléments propres par rapport aux paramètres de l'équation et mettons en évidence l'existence de comportements non monotones. Les résultats obtenus nous permettent d'aborder deux problèmes de natures différentes. La dépendance par rapport au transport est utilisée pour trouver les états d'équilibres et analyser le comportement en temps long de modèles non-linéaires, dont le " système du prion ". La dépendance par rapport à la fragmentation nous permet quant à elle d'étudier un problème d'optimisation. Celui-ci consiste à introduire un contrôle sur la fragmentation et à trouver la stratégie qui maximise la croissance de la population, ceci à des fins diagnostiques. Dans un dernier chapitre, nous présentons un schéma numérique conservatif pour des équations d'agrégation-fragmentation comprenant un terme de coagulation.
4

Equations différentielles stochastiques rétrogrades ergodiques et applications aux EDP / Ergodic backward stochastic differential equations and their applications to PDE

Madec, Pierre-Yves 30 June 2015 (has links)
Cette thèse s'intéresse à l'étude des EDSR ergodiques et à leurs applications à l'étude du comportement en temps long des solutions d'EDP paraboliques semi-linéaires. Dans un premier temps, nous établissons des résultats d'existence et d'unicité d'une EDSR ergodique avec conditions de Neumann au bord dans un convexe non borné et dans un environnement faiblement dissipatif. Nous étudions ensuite leur lien avec les EDP avec conditions de Neumann au bord et nous donnons un exemple d'application à un problème de contrôle optimal stochastique. La deuxième partie est constituée de deux sous-parties. Tout d'abord, nous étudions le comportement en temps long des solutions mild d'une EDP parabolique semi-linéaire en dimension infinie par des méthodes probabilistes. Cette méthode probabiliste repose sur une application d'un résultat nommé "Basic coupling estimate" qui nous permet d'obtenir une vitesse de convergence exponentielle de la solution vers sons asymptote. Au passage notons que cette asymptote est entièrement déterminée par la solution de l'EDP ergodique semi-linéaire associée à l'EDP parabolique semi-linéaire initiale. Puis, nous adaptons cette méthode à l'étude du comportement en temps long des solutions de viscosité d'une EDP parabolique semi-linéaire avec condition de Neumann au bord dans un convexe borné en dimension finie. Par des méthodes de régularisation et de pénalisation des coefficients et en utilisant un résultat de stabilité pour les EDSR, nous obtenons des résultats analogues à ceux obtenus dans le contexte mild, avec notamment une vitesse exponentielle de convergence de la solution vers son asymptote. / This thesis deals with the study of ergodic BSDE and their applications to the study of the large time behaviour of solutions to semilinear parabolic PDE. In a first time, we establish some existence and uniqueness results to an ergodic BSDE with Neumann boundary conditions in an unbounded convex set in a weakly dissipative environment. Then we study their link with PDE with Neumann boundary condition and we give an application to an ergodic stochastic control problem. The second part consists of two sections. In the first one, we study the large time bahaviour of mild solutions to semilinear parabolic PDE in infinite dimension by a probabilistic method. This probabilistic method relies on a Basic coupling estimate result which gives us an exponential rate of convergence of the solution toward its asymptote. Let us mention that that this asymptote is fully determined by the solution of the ergodic semilinear PDE associated to the parabolic semilinear PDE. Then, we adapt this method to the sudy of the large time behaviour of viscosity solutions of semilinear parabolic PDE with Neumann boundary condition in a convex and bounded set in finite dimension. By regularization and penalization procedures, we obtain similar results as those obtained in the mild context, especially with an exponential rate of convergence for the solution toward its asymptote.
5

Analyse mathématique de modèles de diffusion en milieu poreux élastique

Saint-Macary, Patrick 26 November 2004 (has links) (PDF)
La propagation d'ondes élastiques dans un milieu poreux saturé de fluide est un phénomène complexe intervenant dans de nombreuses applications comme la prospection d'hydrocarbures. Ce phénomène est transcrit au moyen d'un système couplé d'équations hyperbolique-parabolique dû à M. A. Biot d'inconnues u, déplacement de la structure et p, pression du fluide. La première équation décrit l'évolution en temps de u tandis que la seconde est une équation de diffusion obtenue en injectant la loi de Darcy dans la loi de conservation de la masse. Le couplage représente les effets dits de consolidation dus aux interactions entre le fluide et la structure poreuse. Un terme de consolidation secondaire peut intervenir dans la première équation et si on le néglige, le système obtenu correspond à un modèle utilisé en thermoélasticité. Un autre cas limite du modèle de Biot est le cas quasi-statique où la densité de la structure est négligeable. Enfin, un modèle non linéaire peut s'obtenir en perturbant le potentiel d'élasticité linéaire par un potentiel non linéaire représenté par un q-Laplacien. On montre ici l'existence et l'unicité des solutions des modèles de Biot linéaire et non linéaire dans différents cas variant en fonction des paramètres physiques. On utilise des méthodes d'approximation de Galerkin, des techniques de régularisation et de pénalisation pour l'existence et des fonctions-test de Ladyzenskaja pour les résultats d'unicité. On compare les modèles thermoélastique et quasi-statique au modèle complet en estimant dans chaque cas les taux de convergence en fonction des paramètres avant d'étudier le comportement en temps long du modèle.
6

Modélisation mathématique du transport diffusif de charges partiellement quantiques.

Vauchelet, Nicolas 24 November 2006 (has links) (PDF)
Le travail de la thèse concerne la modélisation et l'analyse <br />mathématique du transport d'électrons confinés dans une nanostructure<br />dans le but d'implémenter des simulations numériques. Dans de tels<br />dispositifs nanométriques, les ordres de grandeurs ne jouent pas le<br />même rôle dans chaque direction. Les électrons peuvent être<br />extrêmement confinés dans une ou plusieurs directions. Un modèle <br />quantique est nécessaire pour décrire le confinement. Dans la<br />direction non confinée, le transport est supposé de nature classique. <br />Nous proposons alors un système couplé quantique/classique. <br />Les collisions intervenant lors du transport induisent un régime<br />diffusif des porteurs de charges. Le modèle diffusif est obtenu grâce<br />à une limite de diffusion d'un modèle cinétique. L'analyse<br />mathématique de cette limite de diffusion et du modèle diffusif couplé<br />sont présentées. Une simulation numérique du transport dans un<br />nanotransistor est obtenue avec ce modèle.
7

Équation de réaction-diffusion en milieux hétérogènes : persistence, propagation et effet de la géométrie

Bouhours, Juliette 08 July 2014 (has links) (PDF)
Dans cette thèse nous nous intéressons aux équations de réaction-diffusion et à leurs applications en sciences biologiques et médicales. Plus particulièrement on étudie l'existence ou la non-existence de phénomènes de propagation en milieux hétérogènes à travers l'existence d'ondes progressives ou plus généralement l'existence de fronts de transition généralisés. On obtient des résultats d'existence de phénomènes de propagation dans trois environnements différents. Dans un premier temps on étudie une équation de réaction-diffusion de type bistable dans un domaine extérieur. Cette équation modélise l'évolution de la densité d'une population soumise à un effet Allee fort dont le déplacement suit un processus de diffusion dans un environnement contenant un obstacle. On montre que lorsque l'obstacle satisfait certaines conditions de régularité et se rapproche d'un domaine étoilé ou directionnellement convexe alors la population envahit tout l'espace. On se questionne aussi sur les conditions optimales de régularité qui garantissent une invasion complète de la population. Dans un deuxième travail, nous considérons une équation de réaction-diffusion avec vitesse forcée, modélisant l'évolution de la densité d'une population quelconque qui se diffuse dans l'espace, soumise à un changement climatique défavorable. On montre que selon la vitesse du changement climatique la population s'adapte ou s'éteint. On montre aussi que la densité de population converge en temps long vers une onde progressive et donc se propage (si elle survit) selon un profile constant et à vitesse constante. Dans un second temps on étudie une équation de réaction-diffusion de type bistable dans des domaines cylindriques variés. Ces équations modélisent l'évolution d'une onde de dépolarisation dans le cerveau humain. On montre que l'onde est bloquée lorsque le domaine passe d'un cylindre très étroit à un cylindre de diamètre d'ordre 1 et on donne des conditions géométriques plus générales qui garantissent une propagation complète de l'onde dans le domaine. On étudie aussi ce problème d'un point de vue numérique et on montre que pour les cylindres courbés la courbure peut provoquer un blocage de l'onde pour certaines conditions aux bords.
8

Équation de réaction-diffusion en milieux hétérogènes : persistence, propagation et effet de la géométrie / Reaction diffusion equation in heterogeneous media : persistance, propagation and effect of the geometry

Bouhours, Juliette 08 July 2014 (has links)
Dans cette thèse nous nous intéressons aux équations de réaction-diffusion et à leurs applications en sciences biologiques et médicales. Plus particulièrement on étudie l'existence ou la non-existence de phénomènes de propagation en milieux hétérogènes à travers l'existence d'ondes progressives ou plus généralement l'existence de fronts de transition généralisés. On obtient des résultats d'existence de phénomènes de propagation dans trois environnements différents. Dans un premier temps on étudie une équation de réaction-diffusion de type bistable dans un domaine extérieur. Cette équation modélise l'évolution de la densité d'une population soumise à un effet Allee fort dont le déplacement suit un processus de diffusion dans un environnement contenant un obstacle. On montre que lorsque l'obstacle satisfait certaines conditions de régularité et se rapproche d'un domaine étoilé ou directionnellement convexe alors la population envahit tout l'espace. On se questionne aussi sur les conditions optimales de régularité qui garantissent une invasion complète de la population. Dans un deuxième travail, nous considérons une équation de réaction-diffusion avec vitesse forcée, modélisant l'évolution de la densité d'une population quelconque qui se diffuse dans l'espace, soumise à un changement climatique défavorable. On montre que selon la vitesse du changement climatique la population s'adapte ou s'éteint. On montre aussi que la densité de population converge en temps long vers une onde progressive et donc se propage (si elle survit) selon un profile constant et à vitesse constante. Dans un second temps on étudie une équation de réaction-diffusion de type bistable dans des domaines cylindriques variés. Ces équations modélisent l'évolution d'une onde de dépolarisation dans le cerveau humain. On montre que l'onde est bloquée lorsque le domaine passe d'un cylindre très étroit à un cylindre de diamètre d'ordre 1 et on donne des conditions géométriques plus générales qui garantissent une propagation complète de l'onde dans le domaine. On étudie aussi ce problème d'un point de vue numérique et on montre que pour les cylindres courbés la courbure peut provoquer un blocage de l'onde pour certaines conditions aux bords. / In this thesis we are interested in reaction diffusion equations and their applications in biology and medical sciences. In particular we study the existence or non-existence of propagation phenomena in non homogeneous media through the existence of traveling waves or more generally the existence of transition fronts.First we study a bistable reaction diffusion equation in exterior domain modelling the evolution of the density of a population facing an obstacle. We prove that when the obstacle satisfies some regularity properties and is close to a star shaped or directionally convex domain then the population invades the entire domain. We also investigate the optimal regularity conditions that allow a complete invasion of the population. In a second work, we look at a reaction diffusion equation with forced speed, modelling the evolution of the density of a population facing an unfavourable climate change. We prove that depending on the speed of the climate change the population keeps track with the climate change or goes extinct. We also prove that the population, when it survives, propagates with a constant profile at a constant speed at large time. Lastly we consider a bistable reaction diffusion equation in various cylindrical domains, modelling the evolution of a depolarisation wave in the brain. We prove that this wave is blocked when the domain goes from a thin channel to a cylinder, whose diameter is of order 1 and we give general conditions on the geometry of the domain that allow propagation. We also study this problem numerically and prove that for curved cylinders the curvature can block the wave for particular boundary conditions.
9

Comportements en temps long et à grande échelle de quelques dynamiques de collision. / Long time and large scale behaviour of a few collisional dynamics

Reygner, Julien 24 November 2014 (has links)
Cette thèse comporte trois parties essentiellement indépendantes, dont chacune est consacrée à l'étude d'un système de particules, suivant une dynamique déterministe ou aléatoire, et à l'intérieur duquel les interactions se font uniquement aux collisions entre les particules.La Partie I propose une étude numérique et théorique des états stationnaires hors de l'équilibre du Modèle d'Échange Complet, introduit en physique pour comprendre le transport de la chaleur dans certains matériaux poreux.La Partie II est consacrée à un système de particules browniennes évoluant sur la droite réelle et interagissant à travers leur rang. Le comportement limite de ce système, en temps long et à grand nombre de particules, est décrit, puis les résultats sont appliqués à l'étude d'un modèle de marché financier dit modèle d'Atlas en champ moyen.La Partie III introduit une version multitype du système de particules étudié dans la partie précédente, qui permet d'approcher des systèmes paraboliques d'équations aux dérivées partielles non-linéaires. La limite petit bruit de ce système est appelée dynamique des particules collantes multitype et approche cette fois des systèmes hyperboliques. Une étude détaillée de cette dynamique donne des estimations de stabilité en distance de Wasserstein sur les solutions de ces systèmes. / This thesis contains three independent parts, each one of which is dedicated to the study of a particle system, following either a deterministic or a stochastic dynamics, and in which interactions only occur at collisions. Part I contains a numerical and theoretical study of nonequilibrium steady states of the Complete Exchange Model, which was introduced by physicists in order to understand heat transfer in some porous materials. Part II is dedicated to a system of Brownian particles evolving on the real line and interacting through their ranks. The long time and mean-field behaviour of this system is described, then the results are applied to the study of a model of equity market called the mean-field Atlas model. Part III introduces a multitype version of the particle system studied in the previous part, which allows to approximate parabolic systems of nonlinear partial differential equations. The small noise limit of of this system is called multitype sticky particle dynamics and now approximates hyperbolic systems. A detailed study of this dynamics provides stability estimates in Wasserstein distance for the solutions of these systems.
10

Divers problèmes théoriques et numériques liés à la simulation de fluides non newtoniens

Benoit, David, Benoit, David 22 January 2014 (has links) (PDF)
Le chapitre 1 introduit les modèles et donne les principaux résultats obtenus. Dans le chapitre 2, on présente des simulations numériques d'un modèle macroscopique en deux dimensions. La méthode de discrétisation par éléments finis utilisée est décrite. Pour le cas test de l'écoulement autour d'un cylindre, les phénomènes en jeu dans les fluides vieillissants sont observés. Le chapitre 3 concerne l'étude mathématique de la version unidimensionnelle du système d'équations aux dérivées partielles utilisé pour les simulations. On montre que le problème est bien posé et on examine le comportement en temps long de la solution. Dans le dernier chapitre, des équations macroscopiques sont dérivées à partir d'une équation mésoscopique. L'analyse mathématique de cette équation mésoscopique est également menée

Page generated in 0.1428 seconds