Spelling suggestions: "subject:"comportement een tempo long"" "subject:"comportement enn tempo long""
11 |
Analyse mathématique et numérique de modèles pour les matériaux, de l'échelle microscopique à l'échelle macroscopiqueLelievre, Tony 03 June 2009 (has links) (PDF)
La première partie du mémoire concerne l'étude de modèles multi-échelles (ou micro-macro) pour les fluides complexes. L'intérêt de ces modèles est d'éviter d'avoir à postuler des lois de comportements phénoménologiques, en couplant une description macroscopique classique (lois de conservations de la quantité de mouvement et de la masse) sur la vitesse et la pression, à des modèles microscopiques pour l'évolution des microstructures dans le fluide, à l'origine du caractère non-newtonien du fluide. La loi de comportement consiste alors à exprimer le tenseur des contraintes en fonction de la conformation des microstructures. Durant la thèse, nous avons obtenu quelques résultats d'existence et de convergence des méthodes numériques utilisées pour ces modèles. Plus récemment, nous proposons une méthode numérique pour coupler des modèles micro-macro (fins mais chers) avec des modèles macroscopiques (plus grossiers, mais beaucoup plus économiques en temps de calcul). Nous analysons par ailleurs une méthode de résolution des équations aux dérivées partielles en grande dimension qui a été proposée dans le contexte de la résolution numérique des modèles à l'échelle microscopique pour les fluides polymériques.<br /><br />L'essentiel de nos travaux les plus récents sur le sujet concerne le comportement en temps long de ces modèles, avec un double objectif : théoriquement, la compréhension des modèles physiques passe souvent par l'étude de la stabilité des solutions stationnaires, et de la vitesse de convergence vers l'équilibre ; numériquement, la stabilité des schémas en temps long est cruciale, car on utilise typiquement des simulations instationnaires en temps long pour calculer des solutions stationnaires. Nous montrons comment analyser le comportement des modèles micro-macro en temps long, en utilisant des méthodes d'entropie. Cette étude a ensuite permis de comprendre le comportement en temps long de modèles macroscopiques standard (type Oldroyd-B), et de préciser sous quelles conditions les schémas numériques vérifient des propriétés similaires de stabilité en temps long.<br /><br /><br />La seconde partie du mémoire résume des travaux en simulation moléculaire, à l'échelle quantique, ou à l'échelle de la dynamique moléculaire classique. A l'échelle quantique, nous nous intéressons aux méthodes Quantum Monte Carlo. Il s'agit de méthodes numériques probabilistes pour calculer l'état fondamental d'une molécule (plus petite valeur propre de l'opérateur de Schrödinger à N corps). Essentiellement, il s'agit de donner une interprétation probabiliste du problème par des formules de Feynman-Kac, afin de pouvoir appliquer des méthodes de Monte Carlo (bien adaptées pour des problèmes de ce type, en grande dimension). Nous proposons tout d'abord une étude théorique de la méthode Diffusion Monte Carlo, et notamment<br />d'un biais introduit par l'interprétation probabiliste (appelé fixed node approximation). Nous analysons ensuite les méthodes numériques utilisées en Diffusion Monte Carlo, et proposons une nouvelle stratégie pour améliorer l'échantillonnage des méthodes Variational Monte Carlo.<br /><br />En dynamique moléculaire, nous étudions des méthodes numériques pour le calcul de différences d'énergie libre. Les modèles consistent à décrire l'état d'un système par la position (et éventuellement la vitesse) de particules (typiquement les positions des noyaux dans un système moléculaire), qui interagissent au travers d'un potentiel (qui idéalement proviendrait d'un calcul de mécanique quantique pour déterminer l'état fondamental des électrons pour une position donnée des noyaux). L'objectif est de calculer des moyennes par rapport à la mesure de Boltzmann-Gibbs associée à ce potentiel (moyennes dans l'ensemble canonique). Mathématiquement, il s'agit d'un problème d'échantillonnage de mesures métastables (ou multi-modales), en très grande dimension. La particularité de la dynamique moléculaire est que, bien souvent, on a quelques informations sur les "directions de métastabilité" au travers de coordonnées de réaction. En utilisant cette donnée, de nombreuses méthodes ont été proposées pour permettre l'échantillonnage de la mesure de Boltzmann-Gibbs. Dans une série de travaux, nous avons analysé les méthodes basées sur des équations différentielles stochastiques avec contraintes (dont les solutions vivent sur des sous-variétés définies comme des lignes de niveaux de la coordonnée de réaction). Il s'agit en fait d'analyser des méthodes d'échantillonnage de mesures définies sur des sous-variétés de grande dimension. Plus récemment, nous avons étudié des méthodes adaptatives qui ont été proposées pour se débarrasser des métastabilités. Mathématiquement, il s'agit de méthodes d'échantillonnage préférentiel, avec une fonction d'importance qui est calculée au cours de la simulation de manière adaptative. Nous avons étudié la vitesse de convergence vers la mesure d'équilibre pour ces méthodes adaptatives, en utilisant des méthodes d'entropie. Nous avons proposé de nouvelles méthodes numériques à la communauté appliquée pour utiliser au mieux ces idées.<br /><br /><br />La troisième partie du mémoire résume des travaux issus d'une collaboration avec l'entreprise Rio Tinto (anciennement Pechiney puis Alcan), leader mondial pour la technologie des cuves d'électrolyse de l'aluminium. Cette collaboration a été entamée il y a plusieurs années par C. Le Bris, et notamment au travers de la thèse de J-F. Gerbeau. Mathématiquement, il s'agit d'analyser et de discrétiser les équations de la magnétohydrodynamique pour deux fluides incompressibles non miscibles, séparés par une interface libre. Nous expliquons le contexte industriel et la modélisation, nous résumons la méthode numérique adoptée (méthode Arbitrary Lagrangian Eulerian) et donnons quelques propriétés satisfaites par le schéma (stabilité, conservation de la masse). Nous montrons ensuite comment ce modèle permet d'étudier un phénomène (potentiellement déstabilisant) observé dans les cuves d'électrolyse : le rolling. Ces résultats ont été pour la plupart obtenus durant la thèse.<br /><br />Plus récemment, dans le prolongement de l'étude industrielle, nous nous sommes intéressés à un problème de modélisation fondamentale pour les écoulements à surface (ou interface) libre: le mouvement de la ligne de contact (i.e. le bord de la surface libre qui glisse le long de la paroi). En résumé, nos travaux consistent essentiellement en deux contributions: (i) une compréhension variationnelle d'une condition aux limites permettant de modéliser correctement le mouvement de la ligne de contact (Generalized Navier Boundary Condition), et son implémentation dans un schéma Arbitrary Lagrangian Eulerian, (ii) une analyse de la stabilité du schéma obtenu.
|
12 |
Etude du comportement en temps long de processus de markov déterministes par morceaux / Study of a long time behavior of some piecewise deterministic Markov processesLagasquie, Gabriel 04 July 2018 (has links)
L’objectif de cette thèse est d’étudier le comportement en temps long de certains processus de Markov déterministes par morceaux (PDMP) dont le flot suivi par la composante spatiale commute aléatoirement entre plusieurs flots possédant un unique équilibre attractif (éventuellement le même pour chaque flot). Nous donnerons dans un premier temps un exemple d’étude d’un tel processus construit dans le plan à partir de flots associés à des équations différentielles linéaires stables où il est déjà possible d’observer des comportements contre-intuitifs. La deuxième partie de ce manuscrit est dédiée à l’étude et la comparaison de deux modèles de compétition pour une ressource dans un environnement hétérogène. Le premier modèle est un modèle alétoire simulant l’hétérogénéité temporelle d’un environnement sur les espèces en compétition à l’aide d’un PDMP. Son étude utilise des outils maintenant classiques sur l’étude des PDMP. Le deuxième modèle est un modèle déterministe (présentant sous forme d’un système d’équations différentielles) modélisant l’impact de l’hétérogénéité spatiale d’un environnement sur ces mêmes espèces. Nous verrons que malgré leur nature très différente, le comportement en temps long de ces deux systèmes est relativement similaire et est essentiellement déterminé par le signe des taux d’invasion de chacune des espèces qui sont des quantités dépendant exclusivement des paramètres du système et modélisant la vitesse de croissance (ou de décroissance) de ces espèces lorsqu’elles sont au bord de l’extinction. / The objective of this thesis is to study the long time behaviour of some piecewise deterministic Markov processes (PDMP). The flow followed by the spatial component of these processes switches randomly between several flow converging towards an equilibrium point (not necessarily the same for each flow). We will first give an example of such a process built in the plan from two linear stable differential equations and we will see that its stability depends strongly on the switching times. The second part of this thesis is dedicated to the study and comparison of two competition models in a heterogeneous environment. The first model is a probabilistic model where we build a PDMP simulating the effect of the temporal heterogeneity of an environment over the species in competition. Its study uses classical tools in this field. The second model is a deterministic model simulating the effect of the spatial heterogeneity of an environment over the same species. Despite the fact that the nature of the two models is very different, we will see that their long time behavior is very similar. We define for both model several quantities called invasion rates modelizing the growth (or decreasing) rate speed of a species when it is near to extinction and we will see that the signs of these invasion rates fully describes the long time behavior for both systems.
|
13 |
Divers problèmes théoriques et numériques liés à la simulation de fluides non newtoniens / Various theoretical and numerical issues related to the simulation of non-newtonian fluidsBenoit, David 22 January 2014 (has links)
Le chapitre 1 introduit les modèles et donne les principaux résultats obtenus. Dans le chapitre 2, on présente des simulations numériques d'un modèle macroscopique en deux dimensions. La méthode de discrétisation par éléments finis utilisée est décrite. Pour le cas test de l'écoulement autour d'un cylindre, les phénomènes en jeu dans les fluides vieillissants sont observés. Le chapitre 3 concerne l'étude mathématique de la version unidimensionnelle du système d'équations aux dérivées partielles utilisé pour les simulations. On montre que le problème est bien posé et on examine le comportement en temps long de la solution. Dans le dernier chapitre, des équations macroscopiques sont dérivées à partir d'une équation mésoscopique. L'analyse mathématique de cette équation mésoscopique est également menée / This thesis is devoted to the modelling, the mathematical analysis and the simulation of non-Newtonian fluids. Some fluids in an intermediate liquid-solid phase are particularly considered: aging fluids. Modelling scales are macroscopic and mesoscopic. In Chapter 1, we introduce the models and give the main results obtained. In Chapter 2, we present numerical simulations of a macroscopic two-dimensional model. The finite element method used for discretization is described. For the flow past a cylinder test-case, phenomena at play in aging fluids are observed. The Chapter 3 contains a mathematical analysis of the one-dimensional version of the system of partial differential equations used for the simulations. We show well-posedness and investigate the longtime behaviour of the solution. In the last chapter, macroscopic equations are derived from a mesoscopic equation. The mathematical analysis of this mesoscopic equation is also carried out
|
14 |
Equations d'évolution non locales et problèmes de transition de phaseNguyen, Thanh Nam 29 November 2013 (has links) (PDF)
L'objet de cette thèse est d'étudier le comportement en temps long de solutions d'équations d'évolution non locales ainsi que la limite singulière d'équations et de systèmes d'équations aux dérivées partielles, où intervient un petit paramètre epsilon. Au Chapitre 1, nous considérons une équation de réaction-diffusion non locale avec conservation au cours du temps de l'intégrale en espace de la solution; cette équation a été initialement proposée par Rubinstein et Sternberg pour modéliser la séparation de phase dans un mélange binaire. Le problème de Neumann associé possède une fonctionnelle de Lyapunov, c'est-à-dire une fonctionnelle qui décroit selon les orbites. Après avoir prouvé que la solution est confinée dans une région invariante, nous étudions son comportement en temps long. Nous nous appuyons sur une inégalité de Lojasiewicz pour montrer qu'elle converge vers une solution stationnaire quand t tend vers l'infini. Nous évaluons également le taux de la convergence et calculons précisément la solution stationnaire limite en dimension un d'espace. Le Chapitre 2 est consacré à l'étude de l'équation différentielle non locale que l'on obtient en négligeant le terme de diffusion dans l'équation d'Allen-Cahn non locale étudiée au Chapitre 1. Sans le terme de diffusion, la solution ne peut pas être plus régulière que la fonction initiale. C'est la raison pour laquelle on ne peut pas appliquer la méthode du Chapitre 1 pour l'étude du comportement en temps long de la solution. Nous présentons une nouvelle méthode basée sur la théorie des réarrangements et sur l'étude du profil de la solution. Nous montrons que la solution est stable pour les temps grands et présentons une caractérisation détaillée de sa limite asymptotique quand t tend vers l'infini. Plus précisément, la fonction limite est une fonction en escalier, qui prend au plus deux valeurs, qui coïncident avec les points stables d'une équation différentielle associée. Nous montrons aussi par un contre-exemple non trivial que, quand une hypothèse sur la fonction initiale n'est pas satisfaite, la fonction limite peut prendre trois valeurs, qui correspondent aux points instable et stables de l'équation différentielle associée. Nous étudions au Chapitre 3 une équation différentielle ordinaire non locale qui a éte proposée par M. Nagayama. Une difficulté essentielle est que le dénominateur dans le terme de réaction non local peut s'annuler. Nous appliquons un théorème de point fixe lié a une application contractante pour démontrer que le problème à valeur initiale correspondant possède une solution unique qui reste connée dans un ensemble invariant. Ce problème possède une fonctionnelle de Lyapunov, qui est un ingrédient essentiel pour démontrer que la solution converge vers une solution stationnaire constante par morceaux quand t tend vers l'infini. Au Chapitre 4, nous considérons un modèle d'interface diffuse pour la croissance de tumeurs, où intervient une équation d'ordre quatre de type Cahn Hilliard. Après avoir introduit un modèle de champ de phase associé, on étudie formellement la limite singulière de la solution quand le coefficient du terme de réaction tend vers l'infini. Plus précisément, nous montrons que la solution converge vers la solution d'un problème à frontière libre. AMS subject classifications. 35K57, 35K50, 35K20, 35R35, 35R37, 35B40, 35B25.
|
15 |
Equations d'évolution non locales et problèmes de transition de phase / Non local evolution equations and phase transition problemsNguyen, Thanh Nam 29 November 2013 (has links)
L'objet de cette thèse est d'étudier le comportement en temps long de solutions d'équations d'évolution non locales ainsi que la limite singulière d'équations et de systèmes d'équations aux dérivées partielles, où intervient un petit paramètre epsilon. Au Chapitre 1, nous considérons une équation de réaction-diffusion non locale avec conservation au cours du temps de l'intégrale en espace de la solution; cette équation a été initialement proposée par Rubinstein et Sternberg pour modéliser la séparation de phase dans un mélange binaire. Le problème de Neumann associé possède une fonctionnelle de Lyapunov, c'est-à-dire une fonctionnelle qui décroit selon les orbites. Après avoir prouvé que la solution est confinée dans une région invariante, nous étudions son comportement en temps long. Nous nous appuyons sur une inégalité de Lojasiewicz pour montrer qu'elle converge vers une solution stationnaire quand t tend vers l'infini. Nous évaluons également le taux de la convergence et calculons précisément la solution stationnaire limite en dimension un d'espace. Le Chapitre 2 est consacré à l'étude de l'équation différentielle non locale que l'on obtient en négligeant le terme de diffusion dans l'équation d'Allen-Cahn non locale étudiée au Chapitre 1. Sans le terme de diffusion, la solution ne peut pas être plus régulière que la fonction initiale. C'est la raison pour laquelle on ne peut pas appliquer la méthode du Chapitre 1 pour l'étude du comportement en temps long de la solution. Nous présentons une nouvelle méthode basée sur la théorie des réarrangements et sur l'étude du profil de la solution. Nous montrons que la solution est stable pour les temps grands et présentons une caractérisation détaillée de sa limite asymptotique quand t tend vers l'infini. Plus précisément, la fonction limite est une fonction en escalier, qui prend au plus deux valeurs, qui coïncident avec les points stables d'une équation différentielle associée. Nous montrons aussi par un contre-exemple non trivial que, quand une hypothèse sur la fonction initiale n'est pas satisfaite, la fonction limite peut prendre trois valeurs, qui correspondent aux points instable et stables de l'équation différentielle associée. Nous étudions au Chapitre 3 une équation différentielle ordinaire non locale qui a éte proposée par M. Nagayama. Une difficulté essentielle est que le dénominateur dans le terme de réaction non local peut s'annuler. Nous appliquons un théorème de point fixe lié a une application contractante pour démontrer que le problème à valeur initiale correspondant possède une solution unique qui reste connée dans un ensemble invariant. Ce problème possède une fonctionnelle de Lyapunov, qui est un ingrédient essentiel pour démontrer que la solution converge vers une solution stationnaire constante par morceaux quand t tend vers l'infini. Au Chapitre 4, nous considérons un modèle d'interface diffuse pour la croissance de tumeurs, où intervient une équation d'ordre quatre de type Cahn Hilliard. Après avoir introduit un modèle de champ de phase associé, on étudie formellement la limite singulière de la solution quand le coefficient du terme de réaction tend vers l'infini. Plus précisément, nous montrons que la solution converge vers la solution d'un problème à frontière libre. AMS subject classifications. 35K57, 35K50, 35K20, 35R35, 35R37, 35B40, 35B25. / The aim of this thesis is to study the large time behavior of solutions of nonlocal evolution equations and to also study the singular limit of equations and systems of parabolic partial differential equations involving a small parameter epsilon. In Chapter 1, we consider a nonlocal reaction-diffusion equation with mass conservation, which was originally proposed by Rubinstein and Sternberg as a model for phase separation in a binary mixture. The corresponding Neumann problem possesses a Lyapunov functional, namely a functional which decreases in time along solution orbits. After having proved that the solution is conned in an invariant region, we study its large time behavior and apply a Lojasiewicz inequality to show that it converges to a stationary solution as t tends to infinity. We also evaluate the rate of convergence and precisely compute the limiting stationary solution in one space dimension. Chapter 2 is devoted to the study of a nonlocal evolution equation which one obtains by neglecting the diffusion term in the nonlocal Allen-Cahn equation studied in Chapter 1. Without the diffusion term, the solution can not be expected to be more regular than the initial function. Moreover, because of the absence of the diusion term, the method of Chapter 1 can not be applied to study the large time behavior of the solution. We present a new method based up on rearrangement theory and the study of the solution profile. We show that the solution stabilizes for large times and give a detailed characterization of its asymptotic limit as t tends to infinity. More precisely, it turns out that the limiting function is a step function, which takes at most two values, which are stable points of a corresponding ordinary dierential equation. We also show by means of a nontrivial counterexample that, when a certain hypothesis on the initial function does not hold, the limiting function may take three values. One of them is the unstable point and the two others are the stable points of the ordinary dierential equation. We study in Chapter 3 a nonlocal ordinary dierential equation which has been proposed by M. Nagayama. The nonlocal term involves a denominator which may vanish. We apply a contraction fixed point theorem to prove the existence of a unique solution which stays confined in an invariant region. We also show that the corresponding initial value problem possesses a Lyapunov functional and prove that the solution stabilizes for large times to a step function, which takes at most two values. In Chapter 4, we consider a diffuse-interface tumor-growth model which involves a fourth order Cahn-Hilliard type equation. Introducing a related phase-field model, we formally study the singular limit of the solution as the reaction coecient tends to infinity. More precisely, we show that the solution converges to the solution of a moving boundary problem. AMS subject classifications. 35K57, 35K50, 35K20, 35R35, 35R37, 35B40, 35B25.
|
16 |
Stabilité de solutions régulières pour des systèmes d'Euler-Maxwell et de Navier-Stokes-Maxwell compressibles / Stabilities of smooth solutions for compressible Euler-Maxwell and Navier-Stokes-Maxwell systemsFeng, Yuehong 05 September 2014 (has links)
Cette thèse est essentiellement composée de deux parties traitant des problèmes de Cauchy ou des problèmes périodiques. Dans la première partie, on étudie la stabilité de solutions régulières au voisinage d'états d'équilibre non constants pour un système d'Euler-Maxwell isentropique compressible bipolaire. Par des estimations d'énergie classiques et un argument de récurrence sur l'ordre des dérivées des solutions, on montre l'existence globale et l'unicité des solutions régulières du système lorsque les données initiales sont proches des états d'équilibre. On obtient aussi le comportement asymptotique des solutions quand le temps tend vers l'infini. Dans la deuxième partie, on considère la stabilité en temps long des solutions régulières de systèmes d'Euler-Maxwell et de Navier-Stokes-Maxwell compressibles dans le cas non isentropique lorsque les états d'équilibre sont constants. Grâce à des choix convenables de symétriseurs des systèmes et à des estimations d'énergie, on montre l'existence globale et l'unicité des solutions régulières des systèmes avec données initiales petites. De plus, par le principe de Duhamel et l'outil d'analyse de Fourier, on obtient des taux de décroissance des solutions quand le temps tend vers l'infini. / This thesis is essentially composed of two parts dealing with Cauchy problems and periodic problems. In the first part, we study the stability of smooth solutions near non constant equilibrium states for a two-fluid isentropic compressible Euler-Maxwell system.By classical energy estimates together with an induction argument on the order of the derivatives of solutions, we prove the existence and uniqueness of global solutions to the system when the given initial data are near the equilibrium states. We also obtain the asymptotic behavior of solutions when the time goes to infinity. In the second part, we consider the long time stability of the global smooth solutions for compressible Euler-Maxwell and Navier-Stokes-Maxwell systems in non isentropic case when the equilibrium solutions are constants. With the help of suitable choices of symmetrizers and energy estimates, we prove the existence and uniqueness of global solutions to the systems with given small initial data. Furthermore, using the Duhamel principle and the Fourier analysis tool, we obtain the decay rates of smooth solutions as the time goes to infinity.
|
Page generated in 0.0983 seconds