• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analytical properties of viscosity solutions for integro-differential equations : image visualization and restoration by curvature motions / Propriétés analytiques des solutions de viscosité des équations integro-différentielles : visualisation et restauration d'images par mouvements de courbure

Ciomaga, Adina 29 April 2011 (has links)
Le manuscrit est constitué de deux parties indépendantes.Propriétés des Solutions de Viscosité des Equations Integro-Différentielles.Nous considérons des équations intégro-différentielles elliptiques et paraboliques non-linéaires (EID), où les termes non-locaux sont associés à des processus de Lévy. Ce travail est motivé par l'étude du Comportement en temps long des solutions de viscosité des EID, dans le cas périodique. Le résultat classique nous dit que la solution u(¢, t ) du problème de Dirichlet pour EID se comporte comme ?t Åv(x)Åo(1) quand t !1, où v est la solution du problème ergodique stationaire qui correspond à une unique constante ergodique ?.En général, l'étude du comportement asymptotique est basé sur deux arguments: la régularité de solutions et le principe de maximumfort.Dans un premier temps, nous étudions le Principe de Maximum Fort pour les solutions de viscosité semicontinues des équations intégro-différentielles non-linéaires. Nous l'utilisons ensuite pour déduire un résultat de comparaison fort entre sous et sur-solutions des équations intégro-différentielles, qui va assurer l'unicité des solutions du problème ergodique à une constante additive près. De plus, pour des équationssuper-quadratiques le principe de maximum fort et en conséquence le comportement en temps grand exige la régularité Lipschitzienne.Dans une deuxième partie, nous établissons de nouvelles estimations Hölderiennes et Lipschitziennes pour les solutions de viscosité d'une large classe d'équations intégro-différentielles non-linéaires, par la méthode classique de Ishii-Lions. Les résultats de régularité aident de plus à la résolution du problème ergodique et sont utilisés pour fournir existence des solutions périodiques des EID.Nos résultats s'appliquent à une nouvelle classe d'équations non-locales que nous appelons équations intégro-différentielles mixtes. Ces équations sont particulièrement intéressantes, car elles sont dégénérées à la fois dans le terme local et non-local, mais leur comportement global est conduit par l'interaction locale - non-locale, par exemple la diffusion fractionnaire peut donner l'ellipticité dans une direction et la diffusion classique dans la direction orthogonale.Visualisation et Restauration d'Images par Mouvements de CourbureLe rôle de la courbure dans la perception visuelle remonte à 1954, et on le doit à Attneave. Des arguments neurologiques expliquent que le cerveau humain ne pourrait pas possiblement utiliser toutes les informations fournies par des états de simulation. Mais en réalité on enregistre des régions où la couleur change brusquement (des contours) et en outre les angles et les extremas de courbure. Pourtant, un calcul direct de courbures sur une image est impossible. Nous montrons comment les courbures peuvent être précisément évaluées, à résolution sous-pixelique par un calcul sur les lignes de niveau après leur lissage indépendant.Pour cela, nous construisons un algorithme que nous appelons Level Lines (Affine) Shortening, simulant une évolution sous-pixelique d'une image par mouvement de courbure moyenne ou affine. Aussi bien dans le cadre analytique que numérique, LLS (respectivement LLAS) extrait toutes les lignes de niveau d'une image, lisse indépendamment et simultanément toutes ces lignes de niveau par Curve Shortening(CS) (respectivement Affine Shortening (AS)) et reconstruit une nouvelle image. Nousmontrons que LL(A)S calcule explicitement une solution de viscosité pour le le Mouvement de Courbure Moyenne (respectivement Mouvement par Courbure Affine), ce qui donne une équivalence avec le mouvement géométrique.Basé sur le raccourcissement de lignes de niveau simultané, nous fournissons un outil de visualisation précis des courbures d'une image, que nous appelons un Microscope de Courbure d'Image. En tant que application, nous donnons quelques exemples explicatifs de visualisation et restauration d'image : du bruit, des artefacts JPEG, de l'aliasing seront atténués par un mouvement de courbure sous-pixelique / The present dissertation has two independent parts.Viscosity solutions theory for nonlinear Integro-Differential EquationsWe consider nonlinear elliptic and parabolic Partial Integro-Differential Equations (PIDES), where the nonlocal terms are associated to jump Lévy processes. The present work is motivated by the study of the Long Time Behavior of Viscosity Solutions for Nonlocal PDEs, in the periodic setting. The typical result states that the solution u(¢, t ) of the initial value problem for parabolic PIDEs behaves like ?t Å v(x) Å o(1) as t ! 1, where v is a solution of the stationary ergodic problem corresponding to the unique ergodic constant ?. In general, the study of the asymptotic behavior relies on two main ingredients: regularity of solutions and the strong maximum principle.We first establish Strong Maximum Principle results for semi-continuous viscosity solutions of fully nonlinear PIDEs. This will be used to derive Strong Comparison results of viscosity sub and super-solutions, which ensure the up to constants uniqueness of solutions of the ergodic problem, and subsequently, the convergence result. Moreover, for super-quadratic equations the strong maximum principle and accordingly the large time behavior require Lipschitz regularity.We then give Lipschitz estimates of viscosity solutions for a large class of nonlocal equations, by the classical Ishii-Lions's method. Regularity results help in addition solving the ergodic problem and are used to provide existence of periodic solutions of PIDEs. In both cases, we deal with a new class of nonlocal equations that we term mixed integrodifferential equations. These equations are particularly interesting, as they are degenerate both in the local and nonlocal term, but their overall behavior is driven by the local-nonlocal interaction, e.g. the fractional diffusion may give the ellipticity in one direction and the classical diffusion in the complementary one.Image Visualization and Restoration by CurvatureMotionsThe role of curvatures in visual perception goes back to 1954 and is due to Attneave. It can be argued on neurological grounds that the human brain could not possible use all the information provided by states of simulation. But actually human brain registers regions where color changes abruptly (contours), and furthermore angles and peaks of curvature. Yet, a direct computation of curvatures on a raw image is impossible. We show how curvatures can be accurately estimated, at subpixel resolution, by a direct computation on level lines after their independent smoothing.To performthis programme, we build an image processing algorithm, termed Level Lines (Affine) Shortening, simulating a sub-pixel evolution of an image by mean curvature motion or by affine curvature motion. Both in the analytical and numerical framework, LL(A)S first extracts all the level lines of an image, then independently and simultaneously smooths all of its level lines by curve shortening (CS) (respectively affine shortening (AS)) and eventually reconstructs, at each time, a new image from the evolved level lines.We justify that the Level Lines Shortening computes explicitly a viscosity solution for the Mean CurvatureMotion and hence is equivalent with the clasical, geometric Curve Shortening.Based on simultaneous level lines shortening, we provide an accurate visualization tool of image curvatures, that we call an Image CurvatureMicroscope. As an application we give some illustrative examples of image visualization and restoration: noise, JPEG artifacts, and aliasing will be shown to be nicely smoothed out by the subpixel curvature motion.
2

Equations d'évolution non locales et problèmes de transition de phase / Non local evolution equations and phase transition problems

Nguyen, Thanh Nam 29 November 2013 (has links)
L'objet de cette thèse est d'étudier le comportement en temps long de solutions d'équations d'évolution non locales ainsi que la limite singulière d'équations et de systèmes d'équations aux dérivées partielles, où intervient un petit paramètre epsilon. Au Chapitre 1, nous considérons une équation de réaction-diffusion non locale avec conservation au cours du temps de l'intégrale en espace de la solution; cette équation a été initialement proposée par Rubinstein et Sternberg pour modéliser la séparation de phase dans un mélange binaire. Le problème de Neumann associé possède une fonctionnelle de Lyapunov, c'est-à-dire une fonctionnelle qui décroit selon les orbites. Après avoir prouvé que la solution est confinée dans une région invariante, nous étudions son comportement en temps long. Nous nous appuyons sur une inégalité de Lojasiewicz pour montrer qu'elle converge vers une solution stationnaire quand t tend vers l'infini. Nous évaluons également le taux de la convergence et calculons précisément la solution stationnaire limite en dimension un d'espace. Le Chapitre 2 est consacré à l'étude de l'équation différentielle non locale que l'on obtient en négligeant le terme de diffusion dans l'équation d'Allen-Cahn non locale étudiée au Chapitre 1. Sans le terme de diffusion, la solution ne peut pas être plus régulière que la fonction initiale. C'est la raison pour laquelle on ne peut pas appliquer la méthode du Chapitre 1 pour l'étude du comportement en temps long de la solution. Nous présentons une nouvelle méthode basée sur la théorie des réarrangements et sur l'étude du profil de la solution. Nous montrons que la solution est stable pour les temps grands et présentons une caractérisation détaillée de sa limite asymptotique quand t tend vers l'infini. Plus précisément, la fonction limite est une fonction en escalier, qui prend au plus deux valeurs, qui coïncident avec les points stables d'une équation différentielle associée. Nous montrons aussi par un contre-exemple non trivial que, quand une hypothèse sur la fonction initiale n'est pas satisfaite, la fonction limite peut prendre trois valeurs, qui correspondent aux points instable et stables de l'équation différentielle associée. Nous étudions au Chapitre 3 une équation différentielle ordinaire non locale qui a éte proposée par M. Nagayama. Une difficulté essentielle est que le dénominateur dans le terme de réaction non local peut s'annuler. Nous appliquons un théorème de point fixe lié a une application contractante pour démontrer que le problème à valeur initiale correspondant possède une solution unique qui reste connée dans un ensemble invariant. Ce problème possède une fonctionnelle de Lyapunov, qui est un ingrédient essentiel pour démontrer que la solution converge vers une solution stationnaire constante par morceaux quand t tend vers l'infini. Au Chapitre 4, nous considérons un modèle d'interface diffuse pour la croissance de tumeurs, où intervient une équation d'ordre quatre de type Cahn Hilliard. Après avoir introduit un modèle de champ de phase associé, on étudie formellement la limite singulière de la solution quand le coefficient du terme de réaction tend vers l'infini. Plus précisément, nous montrons que la solution converge vers la solution d'un problème à frontière libre. AMS subject classifications. 35K57, 35K50, 35K20, 35R35, 35R37, 35B40, 35B25. / The aim of this thesis is to study the large time behavior of solutions of nonlocal evolution equations and to also study the singular limit of equations and systems of parabolic partial differential equations involving a small parameter epsilon. In Chapter 1, we consider a nonlocal reaction-diffusion equation with mass conservation, which was originally proposed by Rubinstein and Sternberg as a model for phase separation in a binary mixture. The corresponding Neumann problem possesses a Lyapunov functional, namely a functional which decreases in time along solution orbits. After having proved that the solution is conned in an invariant region, we study its large time behavior and apply a Lojasiewicz inequality to show that it converges to a stationary solution as t tends to infinity. We also evaluate the rate of convergence and precisely compute the limiting stationary solution in one space dimension. Chapter 2 is devoted to the study of a nonlocal evolution equation which one obtains by neglecting the diffusion term in the nonlocal Allen-Cahn equation studied in Chapter 1. Without the diffusion term, the solution can not be expected to be more regular than the initial function. Moreover, because of the absence of the diusion term, the method of Chapter 1 can not be applied to study the large time behavior of the solution. We present a new method based up on rearrangement theory and the study of the solution profile. We show that the solution stabilizes for large times and give a detailed characterization of its asymptotic limit as t tends to infinity. More precisely, it turns out that the limiting function is a step function, which takes at most two values, which are stable points of a corresponding ordinary dierential equation. We also show by means of a nontrivial counterexample that, when a certain hypothesis on the initial function does not hold, the limiting function may take three values. One of them is the unstable point and the two others are the stable points of the ordinary dierential equation. We study in Chapter 3 a nonlocal ordinary dierential equation which has been proposed by M. Nagayama. The nonlocal term involves a denominator which may vanish. We apply a contraction fixed point theorem to prove the existence of a unique solution which stays confined in an invariant region. We also show that the corresponding initial value problem possesses a Lyapunov functional and prove that the solution stabilizes for large times to a step function, which takes at most two values. In Chapter 4, we consider a diffuse-interface tumor-growth model which involves a fourth order Cahn-Hilliard type equation. Introducing a related phase-field model, we formally study the singular limit of the solution as the reaction coecient tends to infinity. More precisely, we show that the solution converges to the solution of a moving boundary problem. AMS subject classifications. 35K57, 35K50, 35K20, 35R35, 35R37, 35B40, 35B25.
3

Comportement asymptotique des solutions globales pour quelques problèmes paraboliques non linéaires singuliers / Asymptotic behavior of global solutions for some singular nonlinear parabolic problems

Ben slimene, Byrame 15 December 2017 (has links)
Dans cette thèse, nous étudions l’équation parabolique non linéaire ∂ t u = ∆u + a |x|⎺⥾ |u|ᵅ u, t > 0, x ∈ Rᴺ \ {0}, N ≥ 1, ⍺ ∈ R, α > 0, 0 < Ƴ < min(2,N) et avec une donnée initiale u(0) = φ. On établit l’existence et l’unicité locale dans Lq(Rᴺ) et dans Cₒ(Rᴺ). En particulier, la valeur q = N ⍺/(2 − γ) joue un rôle critique. Pour ⍺ > (2 − γ)/N, on montre l’existence de solutions auto-similaires globales avec données initiales φ(x) = ω(x) |x|−(2−γ)/⍺, où ω ∈ L∞(Rᴺ) homogène de degré 0 et ||ω||∞ est suffisamment petite. Nous montrons ainsi que si φ(x)∼ω(x) |x| ⎺(²⎺⥾)/⍺ pour |x| grande, alors la solution est globale et asymptotique dans L∞(Rᴺ) à une solution auto-similaire de l’équation non linéaire. Tandis que si φ(x)∼ω(x) |x| (x)|x|−σ pour des |x| grandes avec (2 − γ)/⍺ < σ < N, alors la solution est globale, mais elle est asymptotique dans L∞(Rᴺ) à eᵗ∆(ω(x) |x|−σ). L’équation avec un potentiel plus général, ∂ t u = ∆u + V(x) |u|ᵅ u, V(x) |x |⥾ ∈ L∞(Rᴺ), est également étudiée. En particulier, pour des données initiales φ(x)∼ω(x) |x| ⎺(²⎺⥾)/⍺, |x| grande, nous montrons que le comportement à grand temps est linéaire si V est à support compact au voisinage de l’origine, alors qu’il est non linéaire si V est à support compact au voisinage de l’infini. Nous étudions également le système non linéaire ∂ t u = ∆u + a |x|⎺⥾ |v|ᴾ⎺¹v, ∂ t v = ∆v + b |x|⎺ ᴾ |u|q⎺¹ u, t > 0, x ∈ Rᴺ \ {0}, N ≥ 1, a,b ∈ R, 0 < y < min(2,N)? 0 < p < min(2,N), p,q > 1. Sous des conditions sur les paramètres p, q, γ et ρ nous montrons l’existence et l’unicité de solutions globales avec données initiales petites par rapport à certaines normes. En particulier, on montre l’existence de solutions auto-similaires avec donnée initiale Φ = (φ₁, φ₂), où φ₁, φ₂ sont des données initiales homogènes. Nous montrons également que certaines solutions globales sont asymptotiquement auto-similaires. Comme deuxième objectif, nous considérons l’équation de la chaleur non linéaire ut = ∆u + |u|ᴾ⎺¹u - |u| q⎺¹u, avec t ≥ 0 et x ∈ Ω, la boule unité de Rᴺ, N ≥ 3, avec des conditions aux limites de Dirichlet. Soit h une solution stationnaire à symétrie radiale avec changement de signe de (E). On montre que la solution de (E) avec donnée initiale λh explose en temps fini si |λ − 1| > 0 est suffisamment petit et si 1 < q < p < Ps = N+2/N−2 et p suffisamment proche de Ps. Ceci prouve que l’ensemble des données initiales pour lesquelles la solution est globale n’est pas étoilé au voisinage de 0. / In this thesis, we study the nonlinear parabolic equation ∂ t u = ∆u + a |x|⎺⥾ |u|ᵅ u, t > 0, x ∈ Rᴺ \ {0}, N ≥ 1, ⍺ ∈ R, α > 0, 0 < Ƴ < min(2,N) and with initial value u(0) = φ. We establish local well-posedness in Lq(Rᴺ) and in Cₒ(Rᴺ). In particular, the value q = N ⍺/(2 − γ) plays a critical role.For ⍺ > (2 − γ)/N, we show the existence of global self-similar solutions with initial values φ(x) = ω(x) |x|−(2−γ)/⍺, where ω ∈ L∞(Rᴺ) is homogeneous of degree 0 and ||ω||∞ is sufficiently small. We then prove that if φ(x)∼ω(x) |x| ⎺(²⎺⥾)/⍺ for |x| large, then the solution is global and is asymptotic in the L∞-norm to a self-similar solution of the nonlinear equation. While if φ(x)∼ω(x) |x| (x)|x|−σ for |x| large with (2 − γ)/α < σ < N, then the solution is global but is asymptotic in the L∞-norm toe t(ω(x) |x|−σ). The equation with more general potential, ∂ t u = ∆u + V(x) |u|ᵅ u, V(x) |x |⥾ ∈ L∞(Rᴺ), is also studied. In particular, for initial data φ(x)∼ω(x) |x| ⎺(²⎺⥾)/⍺, |x| large , we show that the large time behavior is linear if V is compactly supported near the origin, while it is nonlinear if V is compactly supported near infinity. we study also the nonlinear parabolic system ∂ t u = ∆u + a |x|⎺⥾ |v|ᴾ⎺¹v, ∂ t v = ∆v + b |x|⎺ ᴾ |u|q⎺¹ u, t > 0, x ∈ Rᴺ \ {0}, N ≥ 1, a,b ∈ R, 0 < y < min(2,N)? 0 < p < min(2,N), p,q > 1. Under conditions on the parameters p, q, γ and ρ we show the existence and uniqueness of global solutions for initial values small with respect of some norms. In particular, we show the existence of self-similar solutions with initial value Φ = (φ₁, φ₂), where φ₁, φ₂ are homogeneous initial data. We also prove that some global solutions are asymptotic for large time to self-similar solutions. As a second objective we consider the nonlinear heat equation ut = ∆u + |u|ᴾ⎺¹u - |u| q⎺¹u, where t ≥ 0 and x ∈ Ω, the unit ball of Rᴺ, N ≥ 3, with Dirichlet boundary conditions. Let h be a radially symmetric, sign-changing stationary solution of (E). We prove that the solution of (E) with initial value λ h blows up in finite time if |λ − 1| > 0 is sufficiently small and if 1 < q < p < Ps = N+2/N−2 and p sufficiently close to Ps. This proves that the set of initial data for which the solution is global is not star-shaped around 0.

Page generated in 0.0425 seconds