Spelling suggestions: "subject:"système dde schrödingerpoisson"" "subject:"système dde schrödingerequation""
1 |
Méthodes asymptotiques et numériques pour le transport quantique résonnantFaraj, Ali 04 December 2008 (has links) (PDF)
Le travail de cette thèse se place dans un contexte de modélisation et de simulation numérique du transport d'électrons dans un nano-composant. Ce transport est décrit en mécanique quantique à l'aide de systèmes de Schrödinger-Poisson. La majeure partie du travail se concentre sur le cas de la diode à effet tunnel résonnant (RTD) dont les puits quantiques donnent lieu à des résonances de l'Hamiltonien mis en jeu.<br />Dans une première partie, nous proposons des méthodes numériques pour la simulation de RTD. Pour résoudre le problème de Shrödinger-Poisson -- en une variable d'espace et en domaine non borné -- qui correspond, nous proposons une méthode de référence valide pour un maillage fin en fréquence autour des résonances. Le travail est motivé par l'écriture d'un algorithme permettant de retrouver les résultats de la méthode de référence en s'affranchissant de la contrainte de raffinement en fréquence qui rend les temps de calcul excessifs. Nous proposons une méthode consistant en la décomposition des fonctions d'onde en une partie non résonnante et une partie résonnante, la dernière nécessitant un calcul précis du mode résonnant et de la valeur de la résonance. En régime stationnaire, la totalité de l'information résonnante est captée sans avoir à raffiner le maillage en fréquence. La principale nouveauté a été d'adapter cette méthode en régime instationnaire.<br />Dans une deuxième partie, nous comparons notre algorithme de référence à l'algorithme de Bonnaillie-Noël, Nier et Patel basé sur un modèle réduit obtenu en réalisant la limite semi-classique h tend vers 0 et intéressant par son temps de calcul. En régime stationnaire, la comparaison a permis de vérifier l'existence de certaines branches de la courbe courant/tension de la RTD prévues par le modèle réduit. Dans le cas de deux puits, nous avons utilisé notre algorithme instationnaire dans une région de la différence de potentiel où un croisement des énergies résonnantes associées à chaque puits se produit donnant une évidence numérique de l'occurrence de phénomènes de battement de la charge d'un puits à l'autre.<br />En vue d'obtenir des modèles réduits similaires à celui étudié dans la deuxième partie, on réalise, dans une troisième partie, l'étude asymptotique d'un système de Schrödinger-Poisson stationnaire considéré sur un domaine borné inclus dans R^d, d<=3, avec un potentiel extérieur décrivant un puits quantique. L'Hamiltonien du système est composé de contributions -- le puits du potentiel extérieur plus un terme non linéaire répulsif -- qui s'étendent sur des échelles de longueurs différentes dont le rapport est donné en fonction du paramètre semi-classique h destiné à tendre vers 0. Avec une fonction de distribution en énergie qui force les particules à rester dans le puits quantique, la limite h tend vers 0 dans le système non linéaire conduit à différents comportements asymptotiques dont l'analyse nécessite une renormalisation spectrale et dépendant de la dimension d'espace d=1, 2 ou 3.
|
2 |
Modélisation mathématique et numérique du transport de gaz quantique dans des situations de fort confinementDelebecque, Fanny 03 December 2009 (has links) (PDF)
Cette thèse en mathématiques appliquées à la nanoélectronique aborde le problème de la simulation mathématique et numérique du transport de gaz d'électrons confinés dans certaines directions de l'espace. A l'échelle de la nanoélectronique, les phénomènes ondulatoires liés au transport des électrons ne peuvent plus être négligés et la description classique du transport électronique doit laisser place à une approche quantique. La modélisation de tels phénomènes nécessite la résolution de systèmes couplés de type Schrödinger-Poisson, coûteux numériquement. Cette thèse s'appuie donc sur le confinement fortement anisotrope des électrons dans de telles structures pour obtenir des modèles asymptotiques à dimensionnalité réduite, via une analyse asymptotique "fort confinement". La principale difficulté mathématique provient ici des oscillations rapides dues au confinement. Des méthodes telles que la moyennisation en temps long sont décrites pour y remédier. On s'intéresse dans cette approche à plusieurs situations de confinement différentes. Ainsi, on présente deux modèles asymptotiques pour la modélisation du transport d'électrons confinés sur un plan, ainsi qu'un modèle de confinement sur un plan d'un gaz d'électrons soumis à un champ magnétique fort uniforme. Enfin, on propose un modèle asymptotique mathématique ainsi que des simulations numériques dans le cas du transport d'électrons confinés dans un nanofil quantique. Celles-ci sont obtenues par des méthodes numériques basées sur l'idée de la réduction de dimensionnalité qui font appel notamment à une méthode de décomposition en sous-bandes.
|
3 |
Modélisation mathématique du transport diffusif de charges partiellement quantiques.Vauchelet, Nicolas 24 November 2006 (has links) (PDF)
Le travail de la thèse concerne la modélisation et l'analyse <br />mathématique du transport d'électrons confinés dans une nanostructure<br />dans le but d'implémenter des simulations numériques. Dans de tels<br />dispositifs nanométriques, les ordres de grandeurs ne jouent pas le<br />même rôle dans chaque direction. Les électrons peuvent être<br />extrêmement confinés dans une ou plusieurs directions. Un modèle <br />quantique est nécessaire pour décrire le confinement. Dans la<br />direction non confinée, le transport est supposé de nature classique. <br />Nous proposons alors un système couplé quantique/classique. <br />Les collisions intervenant lors du transport induisent un régime<br />diffusif des porteurs de charges. Le modèle diffusif est obtenu grâce<br />à une limite de diffusion d'un modèle cinétique. L'analyse<br />mathématique de cette limite de diffusion et du modèle diffusif couplé<br />sont présentées. Une simulation numérique du transport dans un<br />nanotransistor est obtenue avec ce modèle.
|
Page generated in 0.1048 seconds