Spelling suggestions: "subject:"diode à effet tunnel résonnante"" "subject:"diode à effet tunnel résonant""
1 |
Méthodes asymptotiques et numériques pour le transport quantique résonnantFaraj, Ali 04 December 2008 (has links) (PDF)
Le travail de cette thèse se place dans un contexte de modélisation et de simulation numérique du transport d'électrons dans un nano-composant. Ce transport est décrit en mécanique quantique à l'aide de systèmes de Schrödinger-Poisson. La majeure partie du travail se concentre sur le cas de la diode à effet tunnel résonnant (RTD) dont les puits quantiques donnent lieu à des résonances de l'Hamiltonien mis en jeu.<br />Dans une première partie, nous proposons des méthodes numériques pour la simulation de RTD. Pour résoudre le problème de Shrödinger-Poisson -- en une variable d'espace et en domaine non borné -- qui correspond, nous proposons une méthode de référence valide pour un maillage fin en fréquence autour des résonances. Le travail est motivé par l'écriture d'un algorithme permettant de retrouver les résultats de la méthode de référence en s'affranchissant de la contrainte de raffinement en fréquence qui rend les temps de calcul excessifs. Nous proposons une méthode consistant en la décomposition des fonctions d'onde en une partie non résonnante et une partie résonnante, la dernière nécessitant un calcul précis du mode résonnant et de la valeur de la résonance. En régime stationnaire, la totalité de l'information résonnante est captée sans avoir à raffiner le maillage en fréquence. La principale nouveauté a été d'adapter cette méthode en régime instationnaire.<br />Dans une deuxième partie, nous comparons notre algorithme de référence à l'algorithme de Bonnaillie-Noël, Nier et Patel basé sur un modèle réduit obtenu en réalisant la limite semi-classique h tend vers 0 et intéressant par son temps de calcul. En régime stationnaire, la comparaison a permis de vérifier l'existence de certaines branches de la courbe courant/tension de la RTD prévues par le modèle réduit. Dans le cas de deux puits, nous avons utilisé notre algorithme instationnaire dans une région de la différence de potentiel où un croisement des énergies résonnantes associées à chaque puits se produit donnant une évidence numérique de l'occurrence de phénomènes de battement de la charge d'un puits à l'autre.<br />En vue d'obtenir des modèles réduits similaires à celui étudié dans la deuxième partie, on réalise, dans une troisième partie, l'étude asymptotique d'un système de Schrödinger-Poisson stationnaire considéré sur un domaine borné inclus dans R^d, d<=3, avec un potentiel extérieur décrivant un puits quantique. L'Hamiltonien du système est composé de contributions -- le puits du potentiel extérieur plus un terme non linéaire répulsif -- qui s'étendent sur des échelles de longueurs différentes dont le rapport est donné en fonction du paramètre semi-classique h destiné à tendre vers 0. Avec une fonction de distribution en énergie qui force les particules à rester dans le puits quantique, la limite h tend vers 0 dans le système non linéaire conduit à différents comportements asymptotiques dont l'analyse nécessite une renormalisation spectrale et dépendant de la dimension d'espace d=1, 2 ou 3.
|
2 |
Analyse mathématique et numérique de modèles quantiques pour les semiconducteursKefi, Jihene 19 December 2003 (has links) (PDF)
L'objectif principal de ce travail de thèse concerne l'étude mathématique et la résolution numérique de modèles quantiques de transport électronique dans les nanostructures semiconductrices. Le modèle quantique que nous utilisons est celui de Schrödinger. On a pris en considération deux approches. Une première approche monobande où deux modèles unidimensionnels stationnaires sont étudiés. Le premier que nous abordons prend en compte la variation de la masse effective en fonction du matériau semi-conducteur. C'est le modèle Schrödinger avec masse variable. Le second est un modèle où les effets non paraboliques dans la relation de dispersion vecteur d'onde-énergie sont pris en compte. C'est le modèle Kohn-Luttinger. La deuxième approche est de type bibande obtenue à partir du modèle de Kane qui lui aussi découle de la méthode k.P. On le notepar le modèle Schrödinger deux bandes. La partie théorique renferme des résultats d'existence de solutions ( l'aide du théorème de point fixe de Leray Schauder) et de comportement asymptotique. Dans les différents cas, nous avons dérivé des conditions aux bords transparentes. Nous avons établi un résultat concernant la limite semiclassique lorsque $\hbar $ tend vers zéro du modèle stationnaire unidimensionnel Schrödinger avec masse variable. Nous avons montré l'existence et l'unicité de solutions sauf peut-être pour une suite de valeurs d'énergie correspondant à des valeurs propres du spectre discret de l'opérateur de Kohn-Luttinger. Nous montrons l'existence de solutions du modèle Schrödinger à deux bandes dans le cas non-linéaire (le champ électrostatique est calculé auto-consistant). Finalement, dans la partie numérique, nous avons utilisé des éléments finis Hermitiens pour Kohn-Luttinger et une méthode de différences finies pour le modèle Schrödinger à deux bandes. Dans les deux cas, pour le système couplé nous avons utilisé un schéma itératif type Gummel. Nous avons pu réaliser des simulations numériques de dispositifs type diode à effet tunnel résonnant intra-bande RTD ( resp. inter-bande RITD) pour décrire l'approche monobande (resp. bibande). Nous avons obtenu les caractéristiques courant-tension, les coefficients de transmission et le profil des densités de charge électronique.
|
3 |
Composants pour la génération et la détection d'impulsion térahertzOffranc, Olivier 10 May 2010 (has links) (PDF)
Le domaine de fréquences térahertz fait la liaison entre le monde des transistors et des lasers. Malgré les nombreuses applications possibles, il n'existe pas, à l'heure actuelle, de source térahertz compacte fonctionnant à température ambiante. De même, pour la détection d'impulsions térahertz, il n'existe pas vraiment de systèmes satisfaisants pour des applications en télécommunication. Nous avons étudié et caractérisé la croissance du GaAsSb épitaxié à basse température (GaAsSb- BT) afin d'obtenir un matériau résistif à temps de vie court pour l'élaboration de photocommutateurs. À partir de ce matériau, des antennes photocondutrices pour la génération d'impulsions térahertz ont été réalisées. Les premiers résultats obtenus sont encourageants bien que légèrement moins performants que le GaAs-BT et pourraient être améliorés en optimisant la croissance du GaAsSb-BT. En complément, nous avons réalisé des photodiodes à transport unipolaire (UTC-PD) en GaAsSb dont la réponse est similaire à celle des UTC-PD en InGaAs. L'intégration monolithique d'une UTC-PD en GaAsSb avec une antenne térahertz large bande a permis la génération d'une onde térahertz d'environ 300GHz, démontrant ainsi la faisabilité d'un tel dispositif pour la génération d'ondes térahertz. Pour la détection d'impulsions térahertz, nous avons conçu et simulé un monostable à base de diode à effet tunnel résonnant. Ce circuit est composé d'éléments passifs comme l'inductance pour fixer la durée de l'impulsion en sortie du monostable. La fréquence de résonance de cette inductance semble être la principale limitation pour la détection d'impulsions térahertz.
|
4 |
Modélisation Mathématique et Simulation Numérique de Systèmes Fluides QuantiquesGallego, Samy 12 December 2007 (has links) (PDF)
Le sujet de la thèse porte sur l'étude d'une nouvelle classe de modèles de transport quantique: les modèles fluides quantiques issus du principe de minimisation d'entropie. Ces modèles ont été dérivés dans deux articles publiés en 2003 et 2005 par Degond, Méhats et Ringhofer dans Journal of Statistical Physics en adaptant au cadre de la théorie quantique la méthode des moments développée par Levermore dans le cadre classique. Cette méthode consiste à prendre les moments de l'équation de Liouville quantique et à fermer ce système par un équilibre local (ou Maxwellienne quantique) défini comme minimiseur d'une certaine entropie quantique sous contrainte de conservation de certaines quantités physiques comme la masse, le courant, et l'énergie. Le principal intérêt des modèles quantiques ainsi obtenus provient du fait qu'étant macroscopiques, ils sont biens moins coûteux numériquement que des modèles microscopiques comme l'équation de Schrödinger ou l'équation de Wigner, et de plus, ils prennent en compte implicitement des effets de collision bien plus difficiles à modéliser à un niveau microscopique. Le but de cette thèse est donc de proposer des méthodes numériques pour implémenter ces modèles et de les tester sur des dispositifs physiques adéquats.<br />Nous avons donc commencé dans le chapitre I par proposer une discrétisation du plus simple de ces modèles qu'est le modèle de Dérive-Diffusion Quantique sur un domaine fermé. Puis nous avons décidé dans le chapitre II et III d'appliquer ce modèle au transport d'électrons dans les semiconducteurs en choisissant comme dispositif ouvert la diode à effet tunnel résonnant. Ensuite nous nous sommes intéressés au chapitre IV à l'étude et l'implémentation du modèle d'Euler Quantique Isotherme, avant de s'attaquer aux modèles non isothermes dans le chapitre V avec l'étude des modèles d'Hydrodynamique Quantique et de Transport d'Énergie Quantique. Enfin, le chapitre VI s'intéresse à un problème un petit peu différent en proposant un schéma asymptotiquement stable dans la limite semi-classique pour l'équation de Schrödinger écrite dans sa formulation fluide: le système de Madelung.
|
Page generated in 0.1006 seconds