• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Textual Inference for Machine Comprehension / Inférence textuelle pour la compréhension automatique

Gleize, Martin 07 January 2016 (has links)
Étant donnée la masse toujours croissante de texte publié, la compréhension automatique des langues naturelles est à présent l'un des principaux enjeux de l'intelligence artificielle. En langue naturelle, les faits exprimés dans le texte ne sont pas nécessairement tous explicites : le lecteur humain infère les éléments manquants grâce à ses compétences linguistiques, ses connaissances de sens commun ou sur un domaine spécifique, et son expérience. Les systèmes de Traitement Automatique des Langues (TAL) ne possèdent naturellement pas ces capacités. Incapables de combler les défauts d'information du texte, ils ne peuvent donc pas le comprendre vraiment. Cette thèse porte sur ce problème et présente notre travail sur la résolution d'inférences pour la compréhension automatique de texte. Une inférence textuelle est définie comme une relation entre deux fragments de texte : un humain lisant le premier peut raisonnablement inférer que le second est vrai. Beaucoup de tâches de TAL évaluent plus ou moins directement la capacité des systèmes à reconnaître l'inférence textuelle. Au sein de cette multiplicité de l'évaluation, les inférences elles-mêmes présentent une grande variété de types. Nous nous interrogeons sur les inférences en TAL d'un point de vue théorique et présentons deux contributions répondant à ces niveaux de diversité : une tâche abstraite contextualisée qui englobe les tâches d'inférence du TAL, et une taxonomie hiérarchique des inférences textuelles en fonction de leur difficulté. La reconnaissance automatique d'inférence textuelle repose aujourd'hui presque toujours sur un modèle d'apprentissage, entraîné à l'usage de traits linguistiques variés sur un jeu d'inférences textuelles étiquetées. Cependant, les données spécifiques aux phénomènes d'inférence complexes ne sont pour le moment pas assez abondantes pour espérer apprendre automatiquement la connaissance du monde et le raisonnement de sens commun nécessaires. Les systèmes actuels se concentrent plutôt sur l'apprentissage d'alignements entre les mots de phrases reliées sémantiquement, souvent en utilisant leur structure syntaxique. Pour étendre leur connaissance du monde, ils incluent des connaissances tirées de ressources externes, ce qui améliore souvent les performances. Mais cette connaissance est souvent ajoutée par dessus les fonctionnalités existantes, et rarement bien intégrée à la structure de la phrase.Nos principales contributions dans cette thèse répondent au problème précédent. En partant de l'hypothèse qu'un lexique plus simple devrait rendre plus facile la comparaison du sens de deux phrases, nous décrivons une méthode de récupération de passage fondée sur une expansion lexicale structurée et un dictionnaire de simplifications. Cette hypothèse est testée à nouveau dans une de nos contributions sur la reconnaissance d'implication textuelle : des paraphrases syntaxiques sont extraites du dictionnaire et appliquées récursivement sur la première phrase pour la transformer en la seconde. Nous présentons ensuite une méthode d'apprentissage par noyaux de réécriture de phrases, avec une notion de types permettant d'encoder des connaissances lexico-sémantiques. Cette approche est efficace sur trois tâches : la reconnaissance de paraphrases, d'implication textuelle, et le question-réponses. Nous résolvons son problème de passage à l'échelle dans une dernière contribution. Des tests de compréhension sont utilisés pour son évaluation, sous la forme de questions à choix multiples sur des textes courts, qui permettent de tester la résolution d'inférences en contexte. Notre système est fondé sur un algorithme efficace d'édition d'arbres, et les traits extraits des séquences d'édition sont utilisés pour construire deux classifieurs pour la validation et l'invalidation des choix de réponses. Cette approche a obtenu la deuxième place du challenge "Entrance Exams" à CLEF 2015. / With the ever-growing mass of published text, natural language understanding stands as one of the most sought-after goal of artificial intelligence. In natural language, not every fact expressed in the text is necessarily explicit: human readers naturally infer what is missing through various intuitive linguistic skills, common sense or domain-specific knowledge, and life experiences. Natural Language Processing (NLP) systems do not have these initial capabilities. Unable to draw inferences to fill the gaps in the text, they cannot truly understand it. This dissertation focuses on this problem and presents our work on the automatic resolution of textual inferences in the context of machine reading. A textual inference is simply defined as a relation between two fragments of text: a human reading the first can reasonably infer that the second is true. A lot of different NLP tasks more or less directly evaluate systems on their ability to recognize textual inference. Among this multiplicity of evaluation frameworks, inferences themselves are not one and the same and also present a wide variety of different types. We reflect on inferences for NLP from a theoretical standpoint and present two contributions addressing these levels of diversity: an abstract contextualized inference task encompassing most NLP inference-related tasks, and a novel hierchical taxonomy of textual inferences based on their difficulty.Automatically recognizing textual inference currently almost always involves a machine learning model, trained to use various linguistic features on a labeled dataset of samples of textual inference. However, specific data on complex inference phenomena is not currently abundant enough that systems can directly learn world knowledge and commonsense reasoning. Instead, systems focus on learning how to use the syntactic structure of sentences to align the words of two semantically related sentences. To extend what systems know of the world, they include external background knowledge, often improving their results. But this addition is often made on top of other features, and rarely well integrated to sentence structure. The main contributions of our thesis address the previous concern, with the aim of solving complex natural language understanding tasks. With the hypothesis that a simpler lexicon should make easier to compare the sense of two sentences, we present a passage retrieval method using structured lexical expansion backed up by a simplifying dictionary. This simplification hypothesis is tested again in a contribution on textual entailment: syntactical paraphrases are extracted from the same dictionary and repeatedly applied on the first sentence to turn it into the second. We then present a machine learning kernel-based method recognizing sentence rewritings, with a notion of types able to encode lexical-semantic knowledge. This approach is effective on three tasks: paraphrase identification, textual entailment and question answering. We address its lack of scalability while keeping most of its strengths in our last contribution. Reading comprehension tests are used for evaluation: these multiple-choice questions on short text constitute the most practical way to assess textual inference within a complete context. Our system is founded on a efficient tree edit algorithm, and the features extracted from edit sequences are used to build two classifiers for the validation and invalidation of answer candidates. This approach reaches second place at the "Entrance Exams" CLEF 2015 challenge.
2

On sample efficiency and systematic generalization of grounded language understanding with deep learning

Bahdanau, Dzmitry 01 1900 (has links)
En utilisant la méthodologie de l'apprentissage profond qui préconise de s'appuyer davantage sur des données et des modèles neuronaux flexibles plutôt que sur les connaissances de l'expert dans le domaine, la communauté de recherche a récemment réalisé des progrès remarquables dans la compréhension et la génération du langue naturel. Néanmoins, il reste difficile de savoir si une simple extension des méthodes d'apprentissage profond existantes sera suffisante pour atteindre l'objectif d'utiliser le langage naturel pour l'interaction homme-machine. Nous nous concentrons sur deux aspects connexes dans lesquels les méthodes actuelles semblent nécessiter des améliorations majeures. Le premier de ces aspects est l'inefficacité statistique des systèmes d'apprentissage profond: ils sont connus pour nécessiter de grandes quantités de données pour bien fonctionner. Le deuxième aspect est leur capacité limitée à généraliser systématiquement, à savoir à comprendre le langage dans des situations où la distribution des données change mais les principes de syntaxe et de sémantique restent les mêmes. Dans cette thèse, nous présentons quatre études de cas dans lesquelles nous cherchons à apporter plus de clarté concernant l'efficacité statistique susmentionnée et les aspects de généralisation systématique des approches d'apprentissage profond de la compréhension des langues, ainsi qu'à faciliter la poursuite des travaux sur ces sujets. Afin de séparer le problème de la représentation des connaissances du monde réel du problème de l'apprentissage d'une langue, nous menons toutes ces études en utilisant des langages synthétiques ancrés dans des environnements visuels simples. Dans le premier article, nous étudions comment former les agents à suivre des instructions compositionnelles dans des environnements avec une forme de supervision restreinte. À savoir pour chaque instruction et configuration initiale de l'environnement, nous ne fournissons qu'un état cible au lieu d'une trajectoire complète avec des actions à toutes les étapes. Nous adaptons les méthodes d'apprentissage adversariel par imitation à ce paramètre et démontrons qu'une telle forme restreinte de données est suffisante pour apprendre les significations compositionelles des instructions. Notre deuxième article se concentre également sur des agents qui apprennent à exécuter des instructions. Nous développons la plateforme BabyAI pour faciliter des études plus approfondies et plus rigoureuses de ce cadre d'apprentissage. La plateforme fournit une langue BabyAI compositionnelle avec $10 ^ {19}$ instructions, dont la sémantique est précisément définie dans un environnement partiellement observable. Nous rapportons des résultats de référence sur la quantité de supervision nécessaire pour enseigner à l'agent certains sous-ensembles de la langue BabyAI avec différentes méthodes de formation, telles que l'apprentissage par renforcement et l'apprentissage par imitation. Dans le troisième article, nous étudions la généralisation systématique des modèles de réponse visuelle aux questions (VQA). Dans le scénario VQA, le système doit répondre aux questions compositionelles sur les images. Nous construisons un ensemble de données de questions spatiales sur les paires d'objets et évaluons la performance des différents modèles sur les questions concernant les paires d'objets qui ne se sont jamais produites dans la même question dans la distribution d'entraînement. Nous montrons que les modèles dans lesquels les significations des mots sont représentés par des modules séparés qui effectuent des calculs indépendants généralisent beaucoup mieux que les modèles dont la conception n'est pas explicitement modulaire. Cependant, les modèles modulaires ne généralisent bien que lorsque les modules sont connectés dans une disposition appropriée, et nos expériences mettent en évidence les défis de l'apprentissage de la disposition par un apprentissage de bout en bout sur la distribution d'entraînement. Dans notre quatrième et dernier article, nous étudions également la généralisation des modèles VQA à des questions en dehors de la distribution d'entraînement, mais cette fois en utilisant le jeu de données CLEVR, utilisé pour les questions complexes sur des scènes rendues en 3D. Nous générons de nouvelles questions de type CLEVR en utilisant des références basées sur la similitude (par exemple `` la balle qui a la même couleur que ... '') dans des contextes qui se produisent dans les questions CLEVR mais uniquement avec des références basées sur la localisation (par exemple `` le balle qui est à gauche de ... ''). Nous analysons la généralisation avec zéro ou quelques exemples de CLOSURE après un entraînement sur CLEVR pour un certain nombre de modèles existants ainsi qu'un nouveau modèle. / By using the methodology of deep learning that advocates relying more on data and flexible neural models rather than on the expert's knowledge of the domain, the research community has recently achieved remarkable progress in natural language understanding and generation. Nevertheless, it remains unclear whether simply scaling up existing deep learning methods will be sufficient to achieve the goal of using natural language for human-computer interaction. We focus on two related aspects in which current methods appear to require major improvements. The first such aspect is the data inefficiency of deep learning systems: they are known to require extreme amounts of data to perform well. The second aspect is their limited ability to generalize systematically, namely to understand language in situations when the data distribution changes yet the principles of syntax and semantics remain the same. In this thesis, we present four case studies in which we seek to provide more clarity regarding the aforementioned data efficiency and systematic generalization aspects of deep learning approaches to language understanding, as well as to facilitate further work on these topics. In order to separate the problem of representing open-ended real-world knowledge from the problem of core language learning, we conduct all these studies using synthetic languages that are grounded in simple visual environments. In the first article, we study how to train agents to follow compositional instructions in environments with a restricted form of supervision. Namely for every instruction and initial environment configuration we only provide a goal-state instead of a complete trajectory with actions at all steps. We adapt adversarial imitation learning methods to this setting and demonstrate that such a restricted form of data is sufficient to learn compositional meanings of the instructions. Our second article also focuses on instruction following. We develop the BabyAI platform to facilitate further, more extensive and rigorous studies of this setup. The platform features a compositional Baby language with $10^{19}$ instructions, whose semantics is precisely defined in a partially-observable gridworld environment. We report baseline results on how much supervision is required to teach the agent certain subsets of Baby language with different training methods, such as reinforcement learning and imitation learning. In the third article we study systematic generalization of visual question answering (VQA) models. In the VQA setting the system must answer compositional questions about images. We construct a dataset of spatial questions about object pairs and evaluate how well different models perform on questions about pairs of objects that never occured in the same question in the training distribution. We show that models in which word meanings are represented by separate modules that perform independent computation generalize much better than models whose design is not explicitly modular. The modular models, however, generalize well only when the modules are connected in an appropriate layout, and our experiments highlight the challenges of learning the layout by end-to-end learning on the training distribution. In our fourth and final article we also study generalization of VQA models to questions outside of the training distribution, but this time using the popular CLEVR dataset of complex questions about 3D-rendered scenes as the platform. We generate novel CLEVR-like questions by using similarity-based references (e.g. ``the ball that has the same color as ...'') in contexts that occur in CLEVR questions but only with location-based references (e.g. ``the ball that is to the left of ...''). We analyze zero- and few- shot generalization to CLOSURE after training on CLEVR for a number of existing models as well as a novel one.

Page generated in 0.1359 seconds