• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • 2
  • Tagged with
  • 23
  • 23
  • 13
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modélisation tridimensionnelle des écoulements en réseau d’assainissement : Evaluation des modèles RANS à travers l’étude des écoulements au droit d’ouvrages spéciaux / Three-dimensional modelling of sewer flows : RANS approach evaluation through complex structures study

Momplot, Adrien 12 December 2014 (has links)
La modélisation à l’aide de l’approche RANS (Reynolds Averaged Navier Stokes) a été menée en trois dimensions, en considérant les régimes permanent et non permanent, dans le but de simuler les écoulements au niveau des jonctions, bifurcations et déversoirs d’orage. A travers ces trois exemples d’étude, plusieurs stratégies de modélisation (différentes combinaison lois de paroi/modèles de turbulence, différents algorithmes de couplage pression/vitesse, différents schémas de discrétisation spatiale, différentes conditions aux limites, différents types et tailles de maille, etc.) ont été testées et évaluées à l’aide de plusieurs indicateurs de performance (de type RMS –Root Mean Square) en s’appuyant sur les données de vitesses (vitesses moyennes in situ et champs de vitesses obtenus par PIV en laboratoire), hauteurs d’eau, débits (répartition de débits en bifurcation en laboratoire ou débits déversés in situ). Les résultats obtenus sont transposables aux autres cas de singularités et ouvrages spéciaux rencontrés en réseau d’assainissement et montrent que : i) les résultats des simulations 3D sont sensibles à la rugosité, aux conditions limites de hauteur et de vitesse ; ii) dans les trois cas d’étude, les schémas de discrétisation du second ordre et l’algorithme de couplage pression/vitesse PISO sont appropriés ; ii) la loi de paroi scalable couplée aux modèles de turbulence de type k-ε pour le cas des jonctions (avec un débit latéral inférieur ou égal au débit principal) ou des déversoirs semblent convenir, tandis que le modèle de turbulence RSM associé à la loi de paroi enhanced ou scalable permet de mieux représenter les écoulements à travers les bifurcations ou au niveau des jonctions lorsque le débit latéral est dominant. Sur la base de ces résultats, une méthodologie de modélisation plus générale définie en six étapes et fondée sur le guide proposée par Jakeman et al. (2006) a été mise au point. La méthodologie ainsi définie a été utilisée pour i) améliorer l’instrumentation du déversoir OTHU (Observatoire de Terrain en Hydrologie Urbaine) situé à Ecully, à partir de la simulation de sa courbe de fonctionnement et en fournissant les incertitudes sur les débits déversés obtenus ; ii) simuler l’implémentation des capteurs débitmétriques à l’aval d’une jonction. Elle a permis de concevoir et de dimensionner un nouveau dispositif de maîtrise des flux d’eau et de polluants déversés (technologie DSM – dispositif de surveillance et de maîtrise des flux déversés au milieu naturel). Ce dispositif a fait l’objet d’un dépôt de brevet international. Enfin, la mise en œuvre de cette méthodologie a été à l’origine de la découverte d’une nouvelle structure d’écoulement dans la branche latérale d’une bifurcation à 90°. L’analyse des résultats des simulations des écoulements mettant en évidence cette nouvelle structure a montré qu’il était possible de prédire l’apparition de cette dernière à partir du rapport d’aspect et du nombre de Froude. / The understanding of sewer flows behaviour is a key component for better urban drainage monitoring and management. However, these flows are conveyed across singularities (such as bends, drops, deviations, etc.) and special structures (combined sewer overflows –CSOs–, channels junction, dividing flow structures, etc.). These singularities and specific structures exhibit complex geometries, leading to open channel turbulent, three-dimensional and multiphase (pollutants and storm and sewer waters) flows. Using three-dimensional CFD (Computational Fluid Dynamics) platform allows a better understanding of mechanisms of contaminants transport through these structures and singularities, leading to a better sewer monitoring. In this thesis, 3D-RANS (Reynolds Averaged Navier Stokes) modelling approach under steady-state conditions is used in order to study flows within CSOs, junctions and bifurcations. Through these three structures, several modelling strategies (wall law/turbulence model combination, velocity/pressure coupling algorithm, spatial discretisation schemes, boundary conditions, computational mesh –shape and size of cells–, etc.) are tested and evaluated thanks to performance indicators (such as RMS –Root Mean Square– indicators) based on velocities (in situ mean velocities and PIV velocity fields obtained in laboratory), water depths and discharge (discharge repartition for bifurcation in laboratory or in situ overflow discharge, for CSOs). Results deriving from these tests are transposable to other singularities or special structures encountered in sewer network and suggest that: i) simulated CFD results are sensitive to the roughness coefficient; ii) for the three studied structures, second-order discretisation schemes and SIMPLE or PISO velocity/pressure coupling algorithm are appropriate; iii) scalable wall function associated to the group of k-ε turbulence model for junction flows (with a lateral inflow lower or equal to the main inflow) or for CSOs is appropriate, whereas RSM turbulence model associated to enhanced wall function allows a better representation of bifurcation flows or junctions flows when the lateral inflow is greater than the main inflow. Based on these results and on Jakeman et al. (2006) guideline, a six steps-methodology focused on the using of RANS approach modelling has been proposed. This six steps-methodology is used in order to i) enhance the monitoring of an OTHU (Observatoire de Terrain en Hydrologie Urbaine) CSO located at Ecully accounting for uncertainties on overflow discharge values ;ii) simulate the performance of flowmeters downstream of a junction, defining the best location for these sensors. This methodology is used to design the new overflow discharge measurement device. This device is an international patent. Finally, the application of the methodology led to point out a new flow structure, occurring in the downstream lateral branch of a 90° bifurcation.
22

Caractérisation du transfert liquide/gaz du sulfure d’hydrogène dans les réseaux d’assainissement / Sulfide emissions in sewer networks

Carrera, Lucie 02 December 2016 (has links)
Le sulfure d’hydrogène (H2S) est un gaz malodorant, dangereux, et responsable de la corrosion du béton dans les canalisations d’eaux usées. Ce dernier phénomène est très coûteux pour les collectivités. Le composé H2S est généré sous forme soluble dans les zones anaérobies des réseaux d’assainissement (biofilms, sédiments, zones stagnantes ou conduites forcées) et est ensuite émis dans l’atmosphère des canalisations sous forme gazeuse dans les conduites gravitaires. Des modèles sont nécessaires pour améliorer la conception et la gestion des systèmes de collecte des eaux usées. L’objectif de cette thèse est de mieux comprendre les mécanismes de transfert d’H2S lors de l’écoulement gravitaire d’un liquide saturé en gaz dissous. Nous avons développé des techniques de mesure du coefficient de transfert à l’interface liquide-gaz pour le sulfure d’hydrogène et pour l’oxygène. L’influence des conditions hydrodynamiques (vitesse d’eau), aérauliques (vitesse d’air) et de la surface d’échange a été étudiée dans différentes géométries : une cuve agitée de 5 L et une canalisation de 10 mètres de longueur. Nous avons ainsi pu établir la forte influence de la vitesse d’eau sur le coefficient de transfert global. Cette approche expérimentale a été complétée par une approche de modélisation. En utilisant la mécanique des fluides numérique, nous avons essayé de comprendre l’évolution du coefficient de transfert à partir des fluctuations hydrodynamiques locales observées à proximité de l’interface liquide gaz. Les paramètres les plus pertinents pour expliquer les observations effectuées semblent être les grandeurs liées à la turbulence. L’application future de ce type de corrélation serait l’estimation et la prévision des zones d’émissions d’H2S. Ainsi serait-il possible d’identifier les points nécessitant une surveillance et une maintenance particulière. / Hydrogen sulfide (H2S) is a harmful and odorous compound which is also responsible for concrete corrosion in sewers. This phenomenon is costly for the communities. H2S is generated in anaerobic zones in sewer networks (biofilms, sediments, forced mains or stagnant zones), and released into the atmosphere under the form of H2S(g) in gravity pipes. Knowledge-based models are needed to improve the design and the management of wastewater collection systems. The objective of this PhD work is to better understand the mass transfer mechanisms of a water flow saturated in H2S when the flow becomes free. We plan to develop a technique to access the global mass transfer coefficient at the liquid- gas interface for H2S and O2. The effect of hydrodynamic, aeraulic conditions and the liquid-gas surface area on the transfer coefficient were studied in different geometries: small batch reactor of 5L and 10 meter sewer pipe device. A strong influence of the flow velocity on the global transfer coefficient was observed. This experimental approach was completed with a numerical approach. The use of computational fluid dynamics permitted to understand the behavior of transfer coefficient from local hydrodynamics fluctuations observed near the liquid/gas interface. The direct application of this kind of correlation would be the estimation of the transfer fluxes and the localization of hazardous areas for H2S concentration. Consequently it could be possible to identify the sensitive zones requiring a follow-up of the system or a strengthening of the structures.
23

Water quality-based real time control of combined sewer systems / Gestion en temps réel des réseaux d’assainissement unitaires basée sur la qualité de l’eau

Ly, Duy Khiem 28 May 2019 (has links)
La gestion en temps réel (GTR) est considérée comme une solution économiquement efficace pour réduire les déversements par temps de pluie car elle optimise la capacité disponible des réseaux d'assainissement. La GTR permet d'éviter la construction de volumes de rétention supplémentaires, d'augmenter l'adaptabilité du réseau aux changements de politiques de gestion de l'eau et surtout d'atténuer l'impact environnemental des déversoirs d'orage. À la suite de l'intérêt croissant pour la GTR fondée sur la qualité de l'eau (QBR), cette thèse démontre une stratégie simple et efficace pour les charges polluantes déversées par temps de pluie. La performance de la stratégie QBR, basée sur la prédiction des courbes masse-volume (MV), est évaluée par comparaison avec une stratégie typique de GTR à base hydraulique (HBR). Une étude de validation de principe est d'abord réalisée sur un petit bassin versant de 205 ha pour tester le nouveau concept de QBR en utilisant 31 événements pluvieux sur une période de deux ans. Par rapport à HBR, QBR offre une réduction des charges déversées pour plus d'un tiers des événements, avec des réductions de 3 à 43 %. La stratégie QBR est ensuite mise en oeuvre sur le bassin versant de Louis Fargue (7700 ha) à Bordeaux, France et comparée à nouveau à la stratégie HBR. En implémentant QBR sur 19 événements pluvieux sur 15 mois, ses performances sont constantes et apportent des avantages précieux par rapport à HBR, 17 des 19 événements ayant une réduction de charge variant entre 6 et 28.8 %. La thèse évalue en outre l'impact de l'incertitude de prédiction de la courbe MV (due à l'incertitude de prédiction du modèle) sur la performance de la stratégie QBR, en utilisant un événement pluvieux représentatif. La marge d'incertitude qui en résulte est faible. En outre, l'étude de sensibilité montre que le choix de la stratégie QBR ou HBR doit tenir compte des dimensions réelles des bassins et de leur emplacement sur le bassin versant. / Real time control (RTC) is considered as a cost-efficient solution for combined sewer overflow (CSO) reduction as it optimises the available capacity of sewer networks. RTC helps to prevent the need for construction of additional retention volumes, increases the network adaptability to changes in water management policies, and above all alleviates the environmental impact of CSOs. Following increasing interest in water quality-based RTC (QBR), this thesis demonstrates a simple and nothing-to-lose QBR strategy to reduce the amount of CSO loads during storm events. The performance of the QBR strategy, based on Mass-Volume (MV) curves prediction, is evaluated by comparison to a typical hydraulics-based RTC (HBR) strategy. A proof-of-concept study is first performed on a small catchment of 205 ha to test the new QBR concept using 31 storm events during a two-year period. Compared to HBR, QBR delivers CSO load reduction for more than one third of the events, with reduction values from 3 to 43 %. The QBR strategy is then implemented on the Louis Fargue catchment (7700 ha) in Bordeaux, France and similarly compared with the HBR strategy. By implementing QBR on 19 storm events over 15 months, its performance is consistent, bringing valuable benefits over HBR, with 17 out of 19 events having load reduction varying between 6 and 28.8 %. The thesis further evaluates the impact of MV curve prediction uncertainty (due to model prediction uncertainty) on the performance of the QBR strategy, using a representative storm event. The resulting range of uncertainty is limited. Besides, results of the sensitivity study show that the choice of the QBR or HBR strategy should take into account the current tank volumes and their locations within the catchment.

Page generated in 0.0941 seconds